Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission Statement</td>
<td>3</td>
</tr>
<tr>
<td>Vision Statements</td>
<td>3</td>
</tr>
<tr>
<td>Advice from Senior Biology Majors</td>
<td>4-8</td>
</tr>
<tr>
<td>Biology Faculty Members</td>
<td>9-16</td>
</tr>
<tr>
<td>Biology Staff Members</td>
<td>17-19</td>
</tr>
<tr>
<td>Biology Major Requirements</td>
<td>20</td>
</tr>
<tr>
<td>Biology Courses</td>
<td>23</td>
</tr>
<tr>
<td>Honors in Biology</td>
<td>23</td>
</tr>
<tr>
<td>Thesis & Honors Guidelines</td>
<td>25</td>
</tr>
<tr>
<td>School for Field Studies (SFS)</td>
<td>27</td>
</tr>
<tr>
<td>Other Off Campus Study Opportunities</td>
<td>28</td>
</tr>
<tr>
<td>Summer Research at Davidson – DRI & Other Options</td>
<td>29</td>
</tr>
<tr>
<td>Duke-Davidson Immunology Summer Research</td>
<td>30</td>
</tr>
<tr>
<td>Summer Research Programs at Other Institutions</td>
<td>31</td>
</tr>
<tr>
<td>Opportunities to Present Research</td>
<td>32</td>
</tr>
<tr>
<td>Grants for Undergraduate Research</td>
<td>33</td>
</tr>
<tr>
<td>Beta Beta Beta National Biological Honor Society</td>
<td>34</td>
</tr>
<tr>
<td>Davidson Biology Awards</td>
<td>35</td>
</tr>
<tr>
<td>Davidson Biology Events & Resources</td>
<td>36</td>
</tr>
<tr>
<td>Planning Your Future</td>
<td>37</td>
</tr>
<tr>
<td>Career Ideas for Biology Majors</td>
<td>38-39</td>
</tr>
<tr>
<td>Finding a Job</td>
<td>40</td>
</tr>
<tr>
<td>Support for Post-Bac Study Abroad</td>
<td>41</td>
</tr>
<tr>
<td>Graduate & Professional Schools</td>
<td>42</td>
</tr>
<tr>
<td>Applying to Graduate School</td>
<td>43-45</td>
</tr>
<tr>
<td>Biology Department Statement on Plagiarism</td>
<td>46-49</td>
</tr>
<tr>
<td>Safety</td>
<td>50</td>
</tr>
<tr>
<td>Animal Care & Use</td>
<td>51</td>
</tr>
<tr>
<td>Field Work</td>
<td>52</td>
</tr>
<tr>
<td>Field Activity Agreement</td>
<td>53</td>
</tr>
<tr>
<td>Laboratory Use</td>
<td>54-55</td>
</tr>
<tr>
<td>Equipment Policies</td>
<td>56</td>
</tr>
<tr>
<td>Biology Equipment</td>
<td>57</td>
</tr>
<tr>
<td>Math & Science Center</td>
<td>58</td>
</tr>
<tr>
<td>External Grants in Biology</td>
<td>59-63</td>
</tr>
<tr>
<td>Scientific Publications by Davidson Biologists</td>
<td>64-70</td>
</tr>
</tbody>
</table>

2
Mission Statement

The Davidson College Department of Biology provides students with a strong foundation in biology, enabling them to think critically about biological topics, to learn technical skills for solving biological problems, and to communicate biological information in oral and written formats. By offering courses that span the spectrum of biological disciplines, Davidson’s Biology Department prepares students for advanced studies in a wide variety of fields. Finally, the Department’s curriculum prepares all students to take a leadership role in society by furnishing them with the tools to make informed decisions about scientific issues.

Vision Statements

Across its curriculum, the Biology Department will:

- Expose students to a broad range of scientific knowledge and to the many disciplines that comprise the biological sciences.
- Recognize evolution as the keystone for biological understanding.
- Stress a inquiry-based approach to learning that emphasizes critical thinking.
- Provide students with a range of technical skills, including the ability to:
 - Evaluate the benefits and limitations of different research designs, to analyze biological questions and issues, and to become proficient in interpreting and reporting quantitative data.
 - Use advanced research and information technologies.
- Help students develop abilities to convey biological information to both the scientific and lay communities in written and oral formats.

The Biology Department will encourage students to obtain relevant experiences in biology that immerse them in focused research environments both on and off campus.
Advice from Senior Biology Majors

We asked senior biology majors in the classes of 2014, 2015, 2016, and 2017, “What advice would you give to an entering first year student who is considering the biology major?” Here’s what they had to say through anonymous surveys:

Think about if research is something you want to do so you can start taking courses with professors with whom you are interested to research.

It will be tough, but the professors are absolutely amazing.

It is a lot of work, but a lot of fun. The biology major is great because you can tailor it to what you like (big bio or small bio or both) and it provides a great foundation for a career in the sciences or medical field.

Keep up with the reading and use office hours whenever they don't fully understand the material. Also, take advantage of research opportunities as an undergrad if they are interested in research.

You will need advice about Biology courses, Biology faculty, courses in other departments, and your future career. Look for a major adviser who can either answer your questions or connect you with someone who can.

What I typically tell first-year students is to take Bio 111/112 or 113/114 and see how they like it. However, if they are doing poorly and are thinking of moving to another major-- to take one of the upper-level courses first because those go a lot better and you can choose a class based on your interest.

Ask if you can do research with faculty members early on!

Most of the interesting courses also have labs. Go to office hours because professors want to help. Don't be afraid to reach out to your peers when you have questions, too.

Talk to your professors about what you can do with a Biology major/ what you want to do, and they will give you fantastic advice on how to get there

Do it, trust me you won't regret it and you'll learn an unbelievable amount of relevant information that will be pertinent the rest of your life

Study hard and enjoy it, the introductory classes might be a lot and some of which you've already covered in high school, but once you reach the upper level courses, the classes are a lot more interesting and get harder but more fun as well.

Take a broad range of biology classes at first to really grasp what field you are most interested in. Take advantage of your professors’ office hours and advice.

If biology is what you are interested in, definitely do it. If you could be anywhere and major in biology, the biology department at Davidson is the place to be.

It is a challenging program, but an extremely lucrative and rewarding field. There are a variety of opportunities to make the major what you will, choosing what direction you will head into.

If you are interested in getting involved in research, don't hesitate reach out to specific professors or students currently doing research in certain labs to ask about available opportunities.

Take initiative, learn webtree.

Keep up with the work daily and never be afraid to ask questions (if you don't want to do this in class, then just drop by their office)
Advice from Senior Biology Majors (continued)

Take a wide range of classes to see what topics interest you, even within biology. There's so much to learn and its all connected!

Take Biostats and CSC 121 early in your Bio career, and if you know you want to specialize in a Group A or Group B field, don't leave the requirement to take a lab course from the other group 'till the last minute. Study widely and don't be afraid to discover you're passionate about something other than you had planned.

Plan out your next four years as soon as possible but don't be afraid to change your plan.

Find an advisor who is really invested in you. I feel like I was kind of lost along the way, most likely because I didn't really ask for anything from my advisor, but still.

Don't do it just because you think you might be premed.

It is going to be incredibly difficult, but equally rewarding. I think the Biology Department is the closest knit department at Davidson. Being a Biology student and experiencing the amazing faculty first hand has been a true treat.

Get started with introduction biology in your first semester and if interested in research, reach out to professors sooner rather than later.

Don't be afraid to talk to faculty about research and also to approach faculty to discuss Webtree and course selection for the second semester. You'll easily build further connections with other faculty that way and get to know the department.

Don't get discouraged by Bio 111/112 and/or Bio 113/114...biology gets even more interesting when you get to the upper level classes and can study specific things like cancer, evolutionary medicine, etc.

Be willing to reach out to your professors and get their insights on courses/career options.

Wait until the end of sophomore year to officially declare and explore other departments to make sure it is what you want to do. If you love biology and want to work in the field, it is a great fit.

Do it.

Take your intro courses with two different professors so that you can learn what teaching styles you prefer. Use their study suggestions so that you make good study habits for yourself. Don't be afraid to go to office hours.

Create a plan of courses they are interested in taking and to talk to upperclassmen or alumni about their experiences. I would suggest that they read the weekly biology newsletters!

Speak with professors and other students to learn about their experiences with biology here at Davidson.

Definitely consider if you are willing to put in the time for labs. It is probably the best major out of the sciences.

Study way harder for your first test than you think you need to.

Prepare for a ---load of work, but it will be worth it in the end. It will, however, be hard to realize while in the moment.
Advice from Senior Biology Majors (continued)

Do research, whether it's just for a semester, summer, or turns into a thesis. You won't regret it, and you'll probably form a lasting connection with a faculty member.

Meet with your professor early and often. Think about finding an adviser early and talk to them often about how your classes are going.

1) Don't just try to memorize things. I've noticed that the students who hate Biology are the ones who think it is only about memorization. The key is to understand why the different pathways studied, and why each of the different steps are important. 2) Find out which courses are the high-demand courses (asking around can easily produce this information), and put them at the top of your Webtree. 3) Take courses with faculty whose research looks interesting. If their research is still interesting after the course, try to get involved in performing research in their lab.

Take more chem/physics/computer science than you think you should, it's good to have an interdisciplinary background--even if you pass/fail non-requirements, it's good to have that background knowledge.

Talk to the professors, they're helpful and fun--OFFICE HOURS!

If you're a freshman entering Davidson, you're probably coming from being a big fish in your high school, one of the best and most successful and driven students. But now you're in a bigger world. Take, and give, yourself a break. Don't get yourself caught up in the type-A-must-have-perfect-success-at-all-costs mentality that sometimes infects Davidson students, and that can cause a positive feedback cycle of stress. Yes, it's worth working hard to do well, and yes, you'll have to make some sacrifices* to do well, but your college grades are not going to be written on your tombstone--there's more to life and you'll be a better adult and person for it, if you relax and give yourself a break when you need it.

*I suggest waiting till the spring, when plenty of inchworms are available as sacrificial victims.

Don't let one class turn you away from being a Bio major. The major has a lot to offer and you should take 2-3 courses before deciding against Biology. Also, try to do independent research with a faculty member-something I never did and regret.

Use office hours and do research!

Get involved with research early.

Take a variety of classes your first year, but if you're really considering a biology major, make sure to take a class or two right away to see if it's really what you want to do.

I would definitely suggest it, I'd recommend working on getting the group A/Bs early on so you have more flexibility later, no one wants to be desperately trying to get your group B done senior spring.

Make sure you plan for classes that only appear every-other-year, because if you miss them because of a scheduling conflict one semester, then you won't have the opportunity to take that class again.

Take as many introductory courses as possible (including intro bio courses) before determining what is the best fit. Also, speak to as many professors in the department as possible because they have so much knowledge and can guide students in the right direction.
Advice from Senior Biology Majors (continued)

You don't have to have been a "science person" in high school to enjoy biology in college. Just make sure you study whatever inspires you. The beginner-level courses are more intimidating than the upper-level courses because there are people who had a very different high school science career than you might have had, and thus come in with a lot more information and biology knowledge than you. Just treat biology like you would learning a new language... it takes time and practice, and some people might be more fluent than you but that doesn't mean you aren't going to get to that level soon.

Take the initiative and put effort into getting to know the faculty early on. Work with them if you need help and DO RESEARCH. You will regret it if you fall by the wayside.

If you want to get involved in research, don't hesitate to contact a professor with a lab. They are oftentimes very willing and excited to include you!

Put the intro classes on the top of the webtree, and get them out of the way ASAP.

Be ready to always think critically about what you are learning, not just memorize the material. This will be helpful if you are going on in science, medicine, or elsewhere! Do not be afraid to take advantage of the openness and kindness of professors if interested in doing research or any other direction!

Do an independent study, go to faculty office hours to chat and get to know your professor even if you don't need help in the class, and above all go to bio lunch!

Start taking biology classes immediately and don't wait to do them until your last two years.

It's nice to take the intro courses in the first year because there are so many options of upper level courses and it also exposes you to professors that can be potential advisers, besides the ones already teaching the intro classes who will be swamped with potential advisees.

Pursue it if you find biology interesting!

Take at least two lab courses with at least two professors before deciding whether the biology major is an appropriate fit

I would advise that students take classes in which they are passionate about the material. Expanding horizons is great and taking challenging classes helps students grow, but you will benefit immensely from pursuing the topics that you find intriguing. It also makes doing tests and homework much more bearable if you love the material.

Consider all possibilities and take classes in a wide range of subjects.

Make sure to space out lab courses so you never become overloaded during any one semester.

With aspirations of going to medical school, a biology major fit into the pre-med requirements provided me with an excellent foundation for my later education in medicine. The faculty are great and approachable and be sure to build relationships with them outside of the classroom. As an upperclassman, you will also have the opportunity to select classes that are more oriented to your interests.

Try an introductory biology course - and study hard!

Definitely be a biology major. You don't have to be pre-med to be a bio major!

Get involved in research early Use your resources! CTL tutors, office hours, study groups, text, internet

Get involved in research.

Don't base your decision off of Bio 111 or Bio 112, just take one more before you decide!

Plan ahead; look at the courses you would like to take to complete the major and plan according to when they are offered

I would advise them to get to know professors (even if they haven't had courses with them) and not be afraid to ask questions or ask about research opportunities. I would also advise them to plan well, but be aware that it is difficult to get into introductory courses the first year.
Advice from Senior Biology Majors (continued)

Start early, it will give you many more options to get into the classes you really want to be in. I did not take 111 until sophomore fall so I ended up in some classes I really had no interest in.

Start early with taking classes and be sure to get the chemistry 115 requirement (and organic chemistry) in early because they help with understanding the upper level courses. Also, take statistics.

Talk with a professor. You can get great advice about what to expect as a Biology major, and can help guide you through a potential career in science. Don’t form your opinion of biology entirely around intro courses. Topics become much more diverse and intricate as you increase the course level.

This will probably be one of the best decisions you make at Davidson.

Go for it! Be aggressive about trying out new courses, even if they are hard to get into. The faculty are wonderfully supportive, and genuinely want students to do well in their courses. Don’t worry about wanting to study abroad and being premed. In my case, getting abroad credit actually made my coursework requirements for the bio major more manageable! You just have to pick the right program.

Talk to an upperclassmen or biology professor specifically about what classes to take to get started (especially for pre-med biology majors).

Make sure to explore all the classes you have an interest in. Don’t be afraid of upper level courses early in your biology studies.

I would tell them not to be afraid of multiple laboratory courses and to reach out to professors who study a topic in which the student is interested.

Look into School for Field Studies as an abroad opportunity. Get involved with research early on, you can do it throughout the school year and don’t have to stay during the summer to do research.

Take advantage of independent studies and summer research programs! You’ll learn the most when you are doing the discovering.

Be sure to choose an advisor that works well with you, and figure out what you want to do as early as possible to give you maximum freedom in choosing classes in other areas of interest/studying abroad.

Take all the prerequisite courses as quickly as possible. Waiting to take certain courses hurts you in the long run.

Take classes in a lot of subjects prior to deciding that you want to spend your life in the bio labs.

Plan things out in terms of coursework (or at least try to and be flexible with things changing)

Start early and plan ahead. There are some courses than make sense together and others that make sense before taking others. While they may not be prerequisites, take this into consideration when picking courses, don’t just pick randomly. Also, get to know your professors. The relationships I established in the department were a huge part of my success here at Davidson and when it came time for me to apply to professional school.

Get Bio111 and Bio112 out of the way early

Be a biology major if you really love learning about all aspects of Biology-- big and small. Don’t be a bio major if you are considering it only because it would be convenient. In my opinion, the time I spent studying bio was not only worth it; it was enjoyable.

Take the introductory courses now to see if you like it, but take the one you’re more interested in first.
Biology Faculty Members

Dr. Mark Barsoum, Assistant Professor of Biology; Math & Science Center Director
Office: Wall 290
Phone: x2796
Email: mabarsoum@davidson.edu
Education: BS (Physiology) University of California, Davis
PhD (Biomedical Sciences) University of California, San Diego
Research: Science education, neurodegenerative disease, cellular physiology
Courses: BIO 111 – Molecules, Genes, & Cells (+lab)
 BIO 112 – Organisms, Evolution, & Ecosystems (+lab)
 BIO 310 – Human Physiology

Dr. Karen Bernd, Professor of Biology
Office: Wall 276
Lab: Wall 215
Phone: x2889
Email: kabernd@davidson.edu
Education: BS (Biology) Franklin & Marshall College
MA (Molecular Biology) Princeton University
PhD (Molecular Biology) Princeton University
Postdoc (Developmental, Cellular, & Molecular Biology) Duke University
Research: Cell biology, effects of pollutants on lung cells
Courses: BIO 111 – Molecules, Genes, & Cells (+lab)
 BIO 208 – Cell Biology (+lab)
 BIO 238 – Cell Biology & Signaling
 BIO 267 – Cases in Environmental Health

Dr. A. Malcolm Campbell ‘84, Professor of Biology & Genomics Director
Office: Wall 327
Lab: Wall 325
Phone: x2692
Email: macampbell@davidson.edu
Education: BS (Biology) Davidson College
PhD (Biology) Johns Hopkins University
Postdoc (Cellular & Molecular Biology) Washington University
Postdoc (Molecular Genetics) Macalester College
Research: Synthetic biology, genomics, teaching & learning
Courses: BIO 113 – Integrated Concepts in Biology (+lab)
 BIO 309 – Genomics
 BIO 343 – Laboratory Methods in Genomics
Biology Faculty Members (continued)

Dr. Verna Miller Case, Dolan Professor of Biology; Associate Dean
Office: Center for Teaching & Learning (Library)
Phone: x2327
Email: vecase@davidson.edu
Education: BS (Zoology) Pennsylvania State University
PhD (Zoology) Pennsylvania State University
Courses: BIO 362 – Reproductive Ethics
BIO 368 – Heath Care Issues in Zambia

Dr. Rachid El Bejjani, Assistant Professor of Biology
Office: Wall 288
Lab: Wall 248
Phone: x2603
Email: raelbejjani@davidson.edu
Education: BS (Biology) Université Libanaise, Faculté des Sciences
MS (Biology) American University of Beirut
PhD (Molecular & Cellular Biology) University of Arizona
Postdoc (Genetics) Yale University
Research: Molecular mechanisms of nervous system maintenance and axonal regeneration
Courses: BIO 201 – Genetics (+lab)
BIO 333 – Cellular & Molecular Neuroscience (+lab)
BIO 355 – Genome Editing

Dr. Karen Hales, Professor of Biology
Office: Wall 321
Lab: Wall 323
Phone: x2324
Email: kahales@davidson.edu
Education: BA (Biology) Swarthmore College
PhD (Genetics, Cell Biology, & Developmental Biology) Stanford University
Postdoc (Genetics & Cell Biology) University of North Carolina, Chapel Hill
Research: Molecular mechanisms of subcellular organization in fruit fly spermatogenesis
Courses: BIO 111 – Molecules, Genes, & Cells (+lab)
BIO 201 – Genetics (+lab)
BIO 352 – Genetics of Mitochondrial Shaping
BIO 363 – Human Genetics
Dr. Barbara Lom, Professor & Chair of Biology
Office: Wall 219
Lab: Wall 217
Phone: x2338
Email: balom@davidson.edu
Education: BA (Biology) Lawrence University
PhD (Neuroscience) Northwestern University
Postdoc (Biology) University of California, San Diego
Postdoc (Neurobiology) University of California, Los Angeles
Research: Development of the central nervous system, neuronal morphology, and axon guidance
Courses: BIO 107 – Experimental Embryology
BIO 251 – Light Microscopy
BIO 261 – Neuroscience of Exercise
BIO 306 – Developmental Biology (+lab)
BIO 336 – Animal Development

Prof. Linda McNally, Lecturer in Biology
Office: Wall 388
Phone: x2886
Email: limcnally@davidson.edu
Education: BS (Biology) University of North Carolina, Charlotte
MS (Biology) University of North Carolina, Charlotte
Courses: BIO 103 – Microbes & Human Disease
BIO 106 – Microbes & Our Health (+lab)
BIO 108 – Human Biology (+lab)

Dr. Janet Melonakos, Adjunct Assistant Professor of Biology (fall 2017)
Office: Wall 176
Phone: x2604
Email: jamelonakos@davidson.edu
Education: BS (Microbiology) Brigham Young University
PhD (Molecular Cancer Biology) Duke University
Courses: BIO 111 – Molecules, Genes, & Cells (+lab)
BIO 365 – Cancer Biology
Biology Faculty Members (continued)

Dr. Christopher Paradise, Professor of Biology
Office: Wall 192
Lab: Wall 146
Phone: x2890
Email: chparadise@davidson.edu
Education: BS (Biology) State University of New York, Albany
MA (Biology) State University of New York, Binghamton
PhD (Biology) Pennsylvania State University
Postdoc (Biology) Pennsylvania State University
Research: Community ecology of insects living in streams, treeholes, and on decomposing corpses
Courses: BIO 114 – Integrated Concepts in Biology II (+lab)
BIO 256 – Applied Insect Ecology
BIO 317 – Entomology (+lab)
BIO 321 – Ecology (+lab)
BIO 366 – Renewable Natural Resources: Science & Policy
BIO 367 – Ecotoxicology

Dr. Patricia Peroni, Professor of Biology
Office: Wall 389
Lab: Wall 144
Phone: x2329
Email: paperoni@davidson.edu
Education: BS (Biology) State University of New York, Plattsburgh
MS (Library) State University of New York, Albany
MS (Biology) Bucknell University
PhD (Botany) Duke University
Postdoc (Biology) University of North Carolina, Greensboro
Courses: BIO 112 – Organisms, Ecosystems, & Evolution (+lab)
BIO 240 – Statistics for Life Scientists
BIO 257 – Dendrology (Tree ID & Ecology)
BIO 321 – Ecology (+lab)
BIO 396 – Ecology of Disease
Biology Faculty Members (continued)

Dr. Shannon Pittman ’08, Visiting Assistant Professor of Biology

Office: Wall 119
Lab: Wall 121
Phone: x2768
Email: shpittman@davidson.edu
Education: BS (Biology) Davidson College
PhD (Biological Sciences) University of Missouri
Postdoc (Invasive Species) University of Minnesota
Postdoc (Invasive Species) Purdue

Courses: BIO 114 - Integrated Concepts in Biology II (+lab)
BIO 240 – Biostats for Life Scientists

Dr. Jeremiah Putnam, Freeland Professor of Biology

Office: Wall 193
Lab: Wal 142
Phone: x2484
Email: jeputnam@davidson.edu
Education: BS (Biology) Texas A&M
PhD (Zoology) Texas A&M

Courses: BIO 260 – Perspectives on Darwinism
BIO 305 – Microanatomy (Histology (+lab)
BIO 311 – Comparative Anatomy (+lab)

Dr. Wendy Raymond, Professor of Biology, Vice President for Academic Affairs, Dean of Faculty

Office: Chambers 1283
Phone: x2204
Email: weraymond@davidson.edu
Education: AB (Chemistry) Cornell University
PhD (Biochemistry & Molecular Biology) Harvard University
Postdoc (Genetics) University of Washington

Course: BIO 391 – RNA Worlds
Biology Faculty Members (continued)

Dr. Sophia Sarafova, Associate Professor of Biology
Office: Wall 242
Lab: Wall 240
Phone: x2899
Email: sosarafova@davidson.edu
Education: BA (Biochemistry) Swarthmore College
MS (Cell, Molecular, & Biophysical Studies) Columbia University
PhD (Immunology) Columbia University
Postdoc (Immunology) National Institute of Health
Research: Lineage determination in the immune system
Courses: BIO 111 – Molecules, Genes, & Cells (+lab)
BIO 201 – Genetics (+lab)
BIO 307 – Immunology (+lab)
BIO 337 – Principles of Immunology
BIO 364 – Immune System Dysfunction
BIO 392 – Medical Biotechnology
BIO 395 – Biochemistry Seminar

Dr. Kevin G. Smith, Assistant Professor of Biology
Office: Wall 117
Lab: Wall 115
Phone: x3038
Email: kgsmith@davidson.edu
Education: BA (Biology) Colby College
MS (Zoology) Auburn University
PhD (Ecology & Evolutionary Biology) University of Tennessee
Research: Conservation ecology, especially understanding biodiversity change and extinction
Courses: BIO 114 – Integrated Concepts in Biology (+lab)
BIO 227 – Conservation Biology & Biodiversity (+lab)
BIO 356 – Extinction Analysis
Dr. Mark Stanback ‘84, Professor of Biology

Office: Wall 188
Lab: Wall 127
Phone: x2325
Email: mastanback@davidson.edu
Education: BS (Biology) Davidson College
PhD (Zoology) University of California, Berkeley
Postdoc (Zoology) University of Washington
Research: Avian behavioral ecology
Courses: BIO 112 – Organisms, Ecosystems, & Evolution (+lab)
BIO 222 – Vertebrate Zoology (+lab)
BIO 223 – Animal Behavior (+lab)
BIO 232 – Vertebrate Natural History
BIO 252 – Avian Behavioral Ecology
BIO 264 – Evolutionary Medicine
BIO 342 – Evolutionary Biology

Dr. Bryan Thurtle-Schmidt, Assistant Professor

Office: Wall 344
Lab: Wall 346
Phone: 3124
Email: brthurtle@schmidt@davidson.edu
Education: BS (Biochemistry) and BA (History) Indiana University, Bloomington
PhD (Molecular and Cell Biology) University of California, Berkeley
Postdoc (Biochemistry and Biophysics) University of California, San Francisco
Research: Biochemical studies of membrane transport proteins
Courses: BIO 303 – Biochemistry
Biology Faculty Members (continued)

Dr. Debbie Thurtle-Schmidt, Postdoctoral Fellow
Office: Wall 391
Lab: Wall 325
Phone: x2640
Email: dethurtleschmidt@davidson.edu
Education: BS (Biology) Santa Clara University
PdD (Molecular and Cell Biology) University of California, Berkeley
Postdoc (Cellular Molecular Pharmacology) University of California, San Francisco
Research: integrating novel genomics data into teaching bioinformatics
Courses: BIO/CSC 20 Bioinformatics Programming

Dr. David Wessner, Professor of Biology
Office: Wall 274
Lab: Wall 225
Phone: x2846
Email: dawessner@davidson.edu
Education: BS (Biology) Franklin & Marshall College
PhD (Microbiology & Molecular Genetics) Harvard University
Postdoc (Pathology) Uniformed Services University of Health Sciences
Research: viral infections: HIV/AIDS education and outreach materials
Courses: BIO 111 – Molecules, Genes, & Cells (+lab)
BIO 202 – Microbiology (+lab)
BIO 263 – Images of HIV/AIDS
BIO 361 – Biology of HIV/AIDS
Biology Staff Members

Mr. James Denny, Building Services Worker
Location: Basement Wall
Phone: x2595
Email: jadenny@davidson.edu
Duties: Wall maintenance

Mr. Keith Frye, Instrumentation Specialist
Location: Watson B127
Phone: x2490
Email: kefrye@davidson.edu
Duties: Ensuring performance of scientific instruments; developing custom devices

Mr. Mickey Hancock, Building Services Worker
Location: 1st floor Wall
Phone: x2595
Email: mihancock@davidson.edu
Duties: Wall maintenance

Ms. Martha Howland, Building Services Worker
Location: 3rd floor Wall
Phone: x2595
Email: mahowland@davidson.edu
Duties: Wall maintenance

Ms. Jenny Ingraham, Biology Department Coordinator
Office: Wall 282
Phone: x2184
Email: jeingraham@davidson.edu
Education: BPS (Hospitality Management) The Culinary Institute of America
Duties: Manages the biology department office and coordinates department logistics
Ms. Peggy Maiorano, Lab Manager (Introductory labs)
Office: Wall 104
Prep Lab: Wall 104B
Phone: x2509
Email: pemaiorano@davidson.edu
Education: BS (Nursing) Clemson University
MS (Biology) University of North Carolina at Charlotte
Duties: Supports introductory biology lab courses

Ms. Jessica Spillman, Lab Manager (Non-majors & field labs)
Office: Wall 116A
Phone: x3096
Email: jespillman@davidson.edu
Education: BA (Biology) University of North Carolina at Charlotte
MA (Environmental Studies) University of Illinois at Springfield
Duties: Supports environmental studies and biology non-majors and field labs

Ms. Nikki Steele, Building Services Worker
Location: Second floor Wall
Phone: 2595
Email: nisteele@davidson.edu
Duties: Wall maintenance

Ms. Meagan Thomas, Animal Care Coordinator
Office: Wall B013
Phone: x2759
Email: methomas@davidson.edu
Education: BS (Organismal Biology and Ecology; Animal Behavior) Towson University
MS (Biology) Eastern Illinois University
Duties: Overseeing animal care facilities, maintaining compliance with guidelines.
Biology Staff Members (continued)

Mr. Matthew Wallace, Building Services Worker
Location: Wall
Phone: 2595
Email: mawallace@davidson.edu
Duties: Wall maintenance

Ms. Rebecca Vance, Lab Manager, Upper Level Labs
Office: Wall 320A
Phone: x2731
Email: revance@davidson.edu
Education: BS (Biology) Montevallo
MS (Biology) University of Alabama at Birmingham
Duties:

Ms. Johanna Ziegler, Animal Care Technician
Office: Wall B013
Phone x2759
Email: joziegler@davidson.edu
Education: AS Mitchell College, Registered Lab Animal Technologist
Duties: Facilitate animal care needs for the sciences
Biology Major Requirements

Required Courses:
The Biology major requires a total of eleven courses (three intro + eight upper level).
Seven courses must be Davidson courses taught by Davidson College faculty members.

Three introductory courses (two biology, one chemistry):
BIO 111 or BIO 113 – Molecules, Genes, & Cells or Integrated Concepts in Biology I
BIO 112 or BIO 114 – Organisms, Ecosystems, & Evolution Integrated Concepts in Biol. II
CHE 115 – Principles of Chemistry

Eight biology courses numbered 200 or above
Of these eight, at least three from groups A and B, with at least one from each group:

Group A
201 – Genetics
202 – Microbiology
208 – Cell Biology
303 – Biochemistry
306 – Developmental Biology
307 – Immunology
333 – Cellular & Molecular Neuroscience
309 – Genomics + 343 – Methods in Genomics (both must be completed)

Group B
216 – Botany
222 – Vertebrate Field Zoology
223 – Animal Behavior
305 – Microanatomy of the Vertebrates (Histology)
311 – Comparative Anatomy
317 – Entomology
321 – Ecology
331 – Behavioral Neuroscience

Note – in the rare event when a group A or B course is taught without a lab, the course cannot count toward the group A/B requirement (but can count toward the major).

Recommended Courses:
CHE 250 – Introduction to Organic Chemistry
CHE 350 – Experimental Organic Chemistry
MAT 112 – Calculus I & Modeling
MAT 113 – Calculus II or MAT 110 - Finite Mathematics
PHY 120 – General Physics or PHY 130 - General Physics with Calculus
PHY 220 – General Physics or PHY 230- General Physics with Calculus

Notes: Most medical and veterinary schools require four chemistry, two physics, and two math courses.
Most biology graduate programs strongly recommend two organic chemistry, two physics, and two math courses.

AP/IB Credit:
The biology department grants AP/IB credit for Biology 107, which counts toward graduation requirements, but not toward biology major requirements.
Biology Courses

Descriptions of biology courses: http://www.davidson.edu/academics/biology/courses

Future course offerings: http://www.davidson.edu/academics/biology/courses/course-schedule-planning

Introductory Biology Courses (take one even and one odd: 111&112, 111&114; 113&112, or 113&114)
BIO 111 – Molecules, Genes, & Cells (+lab)
BIO 112 – Organisms, Evolution, & Ecosystems (+lab)
BIO 113 – Integrated Concepts in Biology I (+lab)
BIO 114 – Integrated Concepts in Biology II (+lab)

Group A Biology Upper-Level Lab Courses (take at least one A course & at least three in groups A&B)
BIO 201 – Genetics (+lab)
BIO 202 – Microbiology (+lab)
BIO 208 – Cell Biology (+lab)
BIO 303 – Biochemistry (+lab)
BIO 306 – Developmental Biology (+lab)
BIO 307 – Immunology (+lab)
BIO 333 – Cellular & Molecular Neuroscience (+lab)

Group B Biology Upper-Level Lab Courses (take at least one B course & at least three in groups A&B)
BIO 216 – Botany (+lab)
BIO 222 – Vertebrate Zoology (+lab)
BIO 223 – Animal Behavior (+lab) (cross-listed as PSY 323)
BIO 227 – Conservation Biology & Biodiversity (+lab)
BIO 305 – Microanatomy of the Vertebrates (a.k.a. Histology) (+lab)
BIO 311 – Comparative Anatomy (+lab)
BIO 317 – Entomology (+lab)
BIO 321 – Ecology (+lab)
BIO 331 – Behavioral Neuroscience (cross-listed as PSY 303) (+lab)

Upper-Level Biology Courses Without Labs
BIO 217 – Insects & People
BIO 238 – Cell Biology & Signaling
BIO 232 – Vertebrate Natural History
BIO 233 – Behavioral Ecology

BIO 299 – Various advanced biology courses transferred from other institutions
BIO 309 – Genomics
BIO 310 – Human Physiology
BIO 332 – Functional Neuroanatomy (cross-listed as PSY 324)
BIO 336 – Animal Development
BIO 337 – Principles of Immunology
BIO 342 – Evolutionary Biology

Biological Methods Courses
BIO 209 – Introduction to Bioinformatics (cross-listed as CSC 209)
BIO 240 – Biostatistics for Life Scientists
BIO 251 – Light Microscopy
BIO 252 – Avian Behavioral Ecology
BIO 256 – Applied Insect Ecology
BIO 257 – Dendrology
BIO 343 – Laboratory Methods in Genomics
BIO 352 – Genetics of Mitochondrial Shaping
BIO 355 – Genome Editing
BIO 356 – Diversity & Extinction Analysis
BIO 357 – Biotoxicity of Hookah Tobacco Smoke
Biology Courses (continued)

Biology Seminar Courses
- BIO 260 – Perspective on Darwinism
- BIO 261 – Neuroscience of Exercise
- BIO 262 – Forensic Serology
- BIO 263 – Representations of HIV/AIDS *(cross-listed as ENG 285)*
- BIO 264 – Evolutionary Medicine
- BIO 267 – Cases in Environmental Health
- BIO 360 – Biology of HIV/AIDS
- BIO 362 – Issues in Reproductive Medicine
- BIO 363 – Human Genetics
- BIO 364 – Immune System Dysfunction
- BIO 365 – Biology of Cancer
- BIO 366 – Renewable Natural Resources: Science & Policy *(cross-listed as ANT 382)*
- BIO 367 – Ecotoxicology
- BIO 391 – RNA Worlds
- BIO 393 – Genome Editing
- BIO 395 – Advanced Biochemistry Seminar *(cross-listed as CHE 430)*
- BIO 396 – Ecology of Disease

Off-Campus Study Courses
- BIO 368 – Health Care Issues in Zambia
- BIO 381 – Environmental Field Studies
- BIO 382 – Environmental Field Studies
- BIO 383 – Environmental Field Studies
- BIO 385 – Techniques in Environmental Field Research

Independent Research Courses
- BIO 370 – Directed Reading in Biology
- BIO 371 – Research in Biology I
- BIO 372 – Research in Biology II
- BIO 373 – Research in Biology III
- BIO 373 – Research in Biology IV
- BIO 379 – Thesis in Biology

Biology courses that do not count toward the biology major *(a.k.a. non-major courses)*
- BIO 102 – Special Topics in Biology
- BIO 103 – Microbes & Disease
- BIO 104 – Nutrition
- BIO 105 – Biology of Plants
- BIO 106 – Microbes & Our Health *(+lab)*
- BIO 107 – Special Topics in Biology I *(+lab)* - awarded for AP or IB Biology
- BIO 108 – Human Biology *(+lab)*
- BIO 109 – Biology of Plants *(+lab)*
- BIO 184 – Environmental Field Studies
- BIO 199 – Various courses transferred from other institutions
Honors in Biology

The Biology Department Thesis Program is designed to promote, develop, and recognize individual excellence through directed independent research. Thesis students meeting additional requirements may be awarded Honors or High Honors in Biology. All thesis students are strongly encouraged to report the results of their research at scientific meetings and in peer-reviewed journals.

Please direct all general inquiries to the Thesis Coordinator: Dr. Bernd

Thesis Requirements:
- A written thesis proposal describing a specific research project in the biological sciences and candidate’s qualifications
- Presentation of a short (~10 minute), public thesis preview presentation as part of a Biology Department seminar along with other thesis students. This group seminar will be scheduled by the faculty Thesis Coordinator as early as possible in the semester preceding the thesis defense.
- Completion of an original, hands-on research project in the biological sciences
- A written thesis describing the completed research project and results
- A public seminar describing the research project and results
- A successful oral defense of the research with Biology Department faculty immediately following the public seminar
- Completion of the Biology major course requirements including at least two semesters of independent research (BIO 371/372/373/374/379), or at least one semester of independent research plus a summer spent on the proposed research. (BIO379)
- Attendance at Biology Department seminars as follows:
 - At least three Biology Department seminars by outside speakers during the semester of the defense and/or the semester preceding that in which the defense is scheduled. Thesis students will have opportunities to interact with invited speakers.
 - All biology student thesis defenses during the semester in which the defense is scheduled.
Note: a Thesis Program candidate who performs at least four hours of biology-related community service activities during the senior year can substitute that service for attendance at one seminar, if approved by the Thesis Coordinator in advance. Any schedule conflicts should be discussed with the Thesis Coordinator as soon as possible.
- Submission of an electronic copy of the final thesis to the Biology Department & Library.

Additional Requirements to achieve Honors in Biology:
- One additional Biology course (numbered 200 or above) beyond those already fulfilling Biology major requirements.
- A final GPA at graduation of greater than or equal to 3.2.

Additional Requirements to achieve High Honors in Biology:
- Successful achievement of Honors
- A final GPA at graduation of greater than or equal to 3.6
- Nomination for high honors by mentor and vote by biology faculty
Thesis & Honors Guidelines

Timeline:
Sophomore and/or junior years:
• Begin planning a thesis proposal with a Biology Department faculty member who is willing to act as a research mentor
• Engage in a group investigation course (BIO250s/350s), independent research course (BIO371-374), and/or summer research (as needed)

Semester before defense (junior or senior year):
• Distribute electronic copies of thesis proposal to all Biology faculty members no later than the Friday of the third week of the semester.
• Biology faculty members will then consider the proposal at their next scheduled meeting. The faculty Thesis Coordinator will communicate a synopsis of the discussion to the student within 72 hours of the meeting. The synopsis highlights strengths and/or weaknesses of the proposal. Revisions to the written document may be required before a decision can be made.
• Give short thesis preview presentation with other thesis students.
• Conduct research with advice and guidance from mentor, second reader(s), etc.
• Begin writing thesis

Semester of the thesis defense (junior or senior year):
• Continue writing thesis (enroll in BIO379)
• In the first month of the semester, arrange date, time, and location for defense in consultation with availability of research mentor, second reader(s), chair, and departmental schedule.
• A complete draft of thesis is due to second reader(s) at least two weeks before the scheduled defense (second readers can request an earlier deadline).
• An electronic copy of the complete thesis is due to all Biology faculty members at least one week before the scheduled defense.
• The oral thesis presentation and defense must be held no later than the last regular class day of the semester.
• Within 24 hours of the defense, the Thesis Coordinator will communicate a synopsis of the strengths and weaknesses of the presentation, defense, and written thesis to the student. Revisions and corrections may be required of the final written thesis and must be completed by the last optional day of the semester.
• When the final thesis has been approved by the Thesis Coordinator, the student submits both electronic and bound copies of the thesis to the Biology Department’s (& library) archives

Thesis Proposal Guidelines
The thesis proposal must include:
• A research proposal written by the student, with advice and editing by the faculty mentor and second reader(s), that includes:
 - Title
 - Abstract (or summary) of proposal
 - Introduction that includes justification and rationale for the research and review of relevant literature
 - Preliminary results, if applicable
 - Detailed description of the proposed research methods including materials and equipment to be used
 - Anticipated outcomes and interpretations of potential results
 - Timetable for completion of each phase of the research project
 - Budget for the research
 - The name(s) of the second reader(s), as chosen in consultation with the mentor
• A copy of the student's transcript (unofficial is acceptable)
• A list of the courses planned for the remainder of the student’s undergraduate program
• A resume or curriculum vitae (CV) illustrating the student’s relevant experiences, activities, service, etc.
Thesis Guidelines

• The thesis must be written in the form of one (or more) scientific papers, following the style of an appropriate peer-reviewed professional journal.
• Electronic copies of the thesis must be distributed to all Biology faculty members no later than a week before the defense.
• An addendum to the thesis should list all Biology department seminars attended during the current and previous semester. Each entry on the list should include the speaker’s name, title of talk, date, and a paragraph describing the major findings presented. The addendum should also describe any community service activities that led to an exemption from one Biology seminar.

Presentation and Defense Guidelines

• In the thesis defense, the student orally presents and defends the thesis research to the Biology Department. The presentation must be scheduled at a time when the student, research advisor, Thesis Coordinator, second reader, and designated tertiary readers (who are at least two faculty members designated by the Thesis Coordinator, one who teaches BIO 111/113 and/or Group A courses and one who teaches BIO 112/114 and/or Group B/C courses) are all available.
• The oral presentation of the thesis research must be advertised and open to the community.
• Throughout the presentation and defense the student is expected to demonstrate a thorough understanding of her/his research question, methods, results, analysis, related literature, etc. and be able to discuss multiple aspects of the research, including any problems encountered in the research process.
• The thesis defense immediately follows the oral presentation and is attended by the Biology faculty, the faculty mentor (if not a Biology faculty member), and the student. No other guests are permitted.
• Immediately following the thesis defense, the student and any non-Biology faculty will be excused from the room. The faculty mentor comments briefly on the student’s work and is then excused while the remaining Biology faculty members meet in executive session to determine if the student achieved honors. The Thesis Coordinator will inform the student of the strengths and weaknesses of the presentation, defense, and written thesis by email within 24 hours of the decision. Honors may be contingent upon satisfactory revisions to the written thesis or the decision to award honors may be delayed until receipt of the revised thesis.

Awarding of Honors

• A thesis student is awarded honors if:
 - all Biology Department honors requirements are met
 - all Davidson College honors requirements are met, including GPA ≥3.2 at graduation
 - a simple majority of Biology faculty members vote in favor of the honors designation

• The decision to award honors includes, but is not limited to:
 - the scholarly quality of the thesis
 - the student’s imagination and creativity in conducting and communicating the research
 - the time and energy the student invested in the research
 - the student’s ability to think clearly, discuss, and answer questions about the research as demonstrated in the execution of the research, written thesis, public presentation, and defense.

Awarding of High Honors

• Candidates awarded honors are considered for high honors if they are awarded honors and a written recommendation by the faculty mentor is submitted to Biology faculty after the defense and before the last regular class day of the student’s final semester.
Thesis & Honors Guidelines (continued)

• Recommendations for high honors are based, in part, on the following:
 - Overall GPA >3.6
 - Thesis research judged meritorious and truly exceptional, using criteria such as, but not
 limited to: success in obtaining extramural funding for research, presentation of research
 at regional or national scientific meetings, and potential for publication of research in a
 peer-reviewed journal.
• The Thesis Coordinator will call for a vote of Biology faculty (tenured and tenure track, excluding the
 primary faculty mentor), no later than 48 hours after the written recommendation for high honors is
 circulated.
• The vote is conducted electronically unless any departmental member requests a meeting to
 discuss the recommendation. The candidate is awarded high honors if a simple majority of the
 voting faculty members favor awarding high honors.

Thesis Proposal Packet Checklist

Name: _____________________________
Proposal Title: ___
Date submitted: __

_____ Research proposal written by the student, with advice and editing by the faculty mentor and second
 reader(s)
 * Format of research proposal
 _____ Title
 _____ The name of the faculty mentor
 _____ The name(s) of the second reader(s), chosen in consultation with the mentor
 and who has accepted the role
 _____ Abstract (or summary) of proposal
 _____ Introduction that includes justification and rationale for the research and
 review of relevant literature
 _____ Preliminary results, if applicable (if not applicable check here N/A: ____)
 _____ Detailed description of the proposed research methods including materials and equipment to be used
 _____ Anticipated outcomes and interpretations of potential results
 _____ Timetable for completion of each phase of the research project (including drafts and revision)
 _____ Budget for the research

_____ A list of the courses planned for the remainder of the student's undergraduate program
 This list should reflect all the required and desired courses the student plans to take and should
 conclude with a statement confirming that all college and major distribution requirements have been met or
 how they will be fulfilled.
 (Consult the projected course offerings site for those that should be available in the biology department)

_____ A copy of the student's transcript (unofficial is acceptable)
_____ A resume or curriculum vitae (C.V.) illustrating the student’s relevant experiences, activities, service,
 etc.

_____ I understand that submitting these components for consideration constitutes pledging that the work
 and writing have been completed in accordance with the Davidson Honor Code. (no additional signature is
 required)

ALL components, including this checklist must be submitted in electronic form to:
1) the faculty mentor and second reader with time for comments and revision.
2) the Thesis Coordinator (Dr. Bernd) on or before the third Thursday of the semester.
3) the Biology Department faculty on or before the third Friday of the semester.
School for Field Studies (SFS)

http://www.davidson.edu/academics/biology/the-school-for-field-studies

Davidson College is an affiliate school of the School for Field Studies (SFS). SFS offers both semester and summer programs concentrating on international environmental issues. These studies target environmental issues that are pertinent to the area surrounding the SFS center. Course work and directed research projects at each center are integrated with the courses taken by students. See SFS catalogue (www.fieldstudies.org) and the Davidson at SFS website (http://www.davidson.edu/academics/biology/the-school-for-field-studies) for more information on the SFS program centers. Dr. Kevin Smith the SFS Affiliate Representative for Davidson College and can be reached at kgsmith@davidson.edu.

Davidson's affiliation with SFS allows Davidson students to:

• Receive priority acceptance to the various SFS semester and summer programs.

• Receive four Davidson biology course credits (BIO 184, 381, 382, 383) for attending a semester program and one Davidson biology course credit (BIO 385) for attending a summer program. Biology 381-383 and Biology 385 count as credit toward a major in Biology. Biology 184 does not count toward the major.

• Fulfill the cultural diversity core requirement (BIO 184), if the student attends semester programs in Kenya, Baja, Turks & Caicos, or Costa Rica.

Application process:
The SFS program is open to all Davidson students regardless of major. Seniors can also participate in an SFS semester at any time during their senior year. All SFS students are technically considered “on campus” students and apply directly to SFS for acceptance. In general, apply as early as possible after making a decision to attend a specific program. Students applying for semester programs during the following academic year should get their applications to SFS early in the New Year, or before the winter holiday break for Fall Semester programs.

Requirements:
• Complete one full semester of college and one college-level biology course
• Other SFS specific requirements may apply and may vary by center

Registration for courses:
Once accepted to an SFS semester program, students are required to complete an Off-Campus Study Terms and Conditions Form. Students do not need to complete a course preference tree for their SFS Semester.

Students attending SFS should leave their course preferences for the following semester with their advisor although they can generally register via the web while at SFS centers

Summer program: Upon acceptance by SFS, students should meet with Dr. Smith and complete an Off Campus Study Agreement form (available at www.bio.davidson.edu/sfs).
Other Off Campus Study Opportunities

Biology students are encouraged to study off-campus as part of their undergraduate education. Advance planning is particularly helpful. Consult Dr. Smith and Davidson's Study Abroad Office for program suggestions and considerations. A few of the many off-campus study programs a Davidson Biology student might consider include:

- Davidson College Study Abroad – Germany, France, India, Peru, Classics Trip
 www.davidson.edu/about/distinctly-davidson/study-abroad
- Organization for Tropical Studies – Costa Rica and South Africa
 http://www.ots.ac.cr/
 An increasing number of Davidson students are studying abroad with the OTS, a program conducted by Duke University. OTS runs both semester and summer programs in Costa Rica (Tropical Biology; Tropical Medicine and public Health) and South Africa (African Ecology and Conservation). These courses are research-intensive with a combination of regular and visiting faculty. Participants receive Duke University course credit. For more information, contact Dr. Stanback
- Oak Ridge Science Semester - Oak Ridge, Tennessee
 www.acm.edu/programs/15/oakridge/index.html
- Marine Biological Labs Semester in Environmental Science - Woods Hole, MA
 http://ecosystems.mbl.edu/ses/
- School for International Training – Africa, Asia, Europe, Latin America, Caribbean, Middle East
 www.sit.edu/studyabroad/
- Sea Education Association - Woods Hole, MA
 www.sea.edu/home/index.aspx
- Danish Institute for Study Abroad - Copenhagen, Denmark
 www.dis.dk/
- Institute for Study Abroad – Australia, Argentina, Chile, China, Costa Rica, Egypt, UK, India, Mexico, New Zealand, Peru
 www.ifsa-butler.org/
- Council on International Educational Exchange – Africa, Middle East, Asia, Australia, Europe, Latin America
 https://www.ciee.org/
- Center for Education Abroad – Australia, China, England, France, Greece, India, Ireland, Italy, New Zealand, Scotland, South Africa, Spain, Tanzania, Wales
 www.arcadia.edu/abroad/
- Semester at Sea
 www.semesteratsea.org/
Summer Research at Davidson – DRI & Other Options

Davidson Research Initiative (DRI)
http://www.davidson.edu/about/distinctly-davidson/research/davidson-research-initiative/application-directions

Students interested in applying for the DRI Summer Research Program should begin consulting with a potential faculty mentor early in the fall semester and submit research proposals and other application materials (form, transcript, and letters) to the DRI program director. Proposal writing workshops will be held in the fall semester. Examples of successful proposals from past years are also available at P:\Academic Affairs\Davidson Research Initiative (authentication required).

Application Deadlines
The online DRI Proposal Application (authentication required) is typically due in mid/late January. Email prompts will automatically be sent to your mentor and faculty recommenders when the online Proposal Application has been completed. Your mentor will be asked to write a letter of recommendation and the faculty recommenders will be asked to fill in a recommendation form. All mentor letters and faculty recommendation forms must be submitted online by late January. Completed applications are typically reviewed by the Student Study and Research Committee with awards announced in February.

Proposals
Detailed proposals must be submitted in order to be considered. Proposals must include:
• research plan (a detailed project description)
• timetable for completing the project
• justification (the unique and original nature of the research)
• description of the interactions between you and your mentor throughout the research
• description of previous experiences that prepare the student for the project
• budget (required materials and estimated costs)
• how results of the research might be shared (posters, presentations, professional publications)

Additional Application Materials
In addition to your proposal, the following materials must be submitted to be considered:
• letter of support from the faculty mentor, assuring that proposal was written by the student
• copy of the student’s transcript
• two letters of recommendation from persons other than your faculty mentor

Students from Historically Black Colleges and Universities (HBCUs)
Davidson invites students from local HBCU campuses to apply for DRI research positions with Davidson faculty. Five HBCU students can participate in the DRI Summer Research Program. HBCU students or faculty members who would like to recommend a student for the program should indicate their interest to the DRI program director, Verna Case. HBCU students who are accepted will be invited to participate under the same conditions as Davidson student participants.

Other Options
Some Davidson faculty members have their own research grants from the College, federal agencies (NSF, NIH, etc.), and/or private agencies. If you are interested in the research of a faculty member, just ask what opportunities might be available to you.
Duke-Davidson Immunology Summer Research

The Duke-Davidson Immunology Summer Program invites outstanding Davidson students to apply for a 10-week research internship in an immunology laboratory at Duke University. The program offers training in cutting edge immunology research. In addition, the selected students will be immersed in research laboratory culture and, with undergraduate fellows from other Duke summer research programs, participate in weekly research seminars and social hours, a workshop about how to apply successfully to graduate school, and a closing poster symposium.

The application is on a web site used by all summer programs at Duke http://gradschool.duke.edu/gsa/srop/ click on ‘Apply’ from the right side menu. When completing the application make sure to indicate the following:

- Why do you wish to participate? (max. 250 word)
- Career goals (max. 300 words)
- Under current interest specify you are interested in research in a Duke Immunology Department laboratory (this and your letters route the application to the correct people)

The online application is a common form. The "past research" paragraph found in the common application is optional for DDIP applicants and will not be taken into consideration when making the decision.

In addition to completing the information on the above website, please arrange for three letters of recommendation to be mailed to:

Dr. Yuan Zhuang, Department of Immunology
Box 3010
Duke University Medical Center
Durham, NC 27710

Dr. Sarafova is the Davidson link for this program. Please contact sosarafova@davidson.edu with questions.
Summer Research Programs at Other Institutions

In addition to summer research opportunities at Davidson, undergraduates can obtain paying positions in research labs at universities and institutions across the country (including a few international opportunities). Competition for these positions is usually very tight, so students are encouraged to apply for multiple summer research opportunities. Application deadlines generally vary from December to March.

NSF REU programs
http://www.nsf.gov/crssprgm/reu/reu_search.cfm
A list of institutions who have National Science Foundation funding—an excellent resource to begin your search for a summer research opportunity

Specific Summer Research Programs:
- **Merck Science Initiative - Undergraduate Science Research Scholarship Awards**
 https://scholarships.uncf.org/Program/Details/76950245-bca2-42e2-b13a-4ae6f7e44285
 This award is intended to help African American undergraduate students who are interested in science careers. This award provides tuition support and opportunities for research experience at a Merck research facility during the summer.
- **HHMI Janelia Undergraduate Scholars**
 http://www.hhmi.org/programs/janelia-undergraduate-scholars
- **Cold Spring Harbor Undergraduate Research Program**
 http://www.cshl.edu/URP/
- **The Kathleen S. Anderson Award and Manomet Bird Observatory**
 https://www.manomet.org/job-opportunities/kathleen-s-anderson-award-promising-biologists
 Grant for avian research, especially research furthering bird conservation. Proposed research must take place in the Americas.

Examples:
In recent years Davidson Biology majors have completed summer research programs at many prestigious research institutions such as:
- Duke University
- Vanderbilt University
- Rockefeller University
- HHMI’s Janelia Farm
- Wake Forest University
- Mayo Clinic
- Caltech
Opportunities to Present Research

On Campus

Davidson Summer Research Symposium
- An annual event held the second week of fall semester featuring research conducted by DRI and other summer research programs at Davidson College.

Alenda Lux Symposia
- An annual symposium featuring research conducted by students across campus; usually held near the end of the Spring semester

Off Campus

Association of Southeastern Biologists (ASB)
http://www.sebiologists.org/

Posters on the Hill
http://www.cur.org/conferences_and_events/student_events/posters_on_the_hill/

National Conferences on Undergraduate Research (NCUR)
http://www.ncur.org/theconference.htm

State of North Carolina Undergraduate Research & Creativity Symposium (SNCURCS)
http://www.sncurcs.org/

North Carolina Academy of Science (NCAS) Annual Meeting
http://www.ncacadsci.org/

Symposium for Young Neuroscientists & Professors of the SouthEast (SYNAPSE)
http://synapse.cofc.edu/

Mid-Atlantic Regional Conference of Undergraduate Scholarship (MARCUS)
http://sbc.edu/marcus/

Undergraduate Research Symposium in the Chemical & Biological Sciences
http://cnmssymposium.umbc.edu/

Sigma Xi Student Research Conference
https://sigmaxi.org/meetings-events/international-research-conference
Grants for Undergraduate Research

The David C. Grant Travel Award
http://www.davidson.edu/academics/biology/grant-travel-awards
Provides funding (up to $1000) for Davidson students to offset the costs of travel to present research at regional or national scientific meetings. Applicants must be Davidson students who are authors on the presentation - preferably first author. All types of biological research are acceptable, though special consideration will be given to field ecology. In addition to providing travel funds, the Grant Awards may also be used to offset publication costs in peer-reviewed journals. The committee expects all applicants to have applied for the $400 grants available from the VPAA’s office (research advisors can provide details). Applications should be submitted to Dr. Mark Stanback and include:

- A cover letter stating the title of the research and details the need (dates, place, and name of conference and/or name of journal and acceptance date of manuscript, list of authors, etc.). This cover letter should also include a short paragraph outlining the main results and its significance.
- A more-detailed presentation of the work in the form of an extended abstract (~1 page) including an outline of the methods (including statistical treatments), the main results, and an explanation of its significance.
- A detailed budget and explanation of any other funding sources that will be used. If the grant is used for publication costs, a copy of the accepted manuscript should be submitted.

North Carolina Independent Colleges and Universities Undergraduate Research Stipend
www.ncicu.org
NCICU will award stipends to students performing undergraduate research at NCICU’s 36 member colleges and universities in the science, technology, engineering and mathematics (STEM) fields of study. Stipends are funded through the undergraduate research endowment established by the North Carolina GlaxoSmithKline Foundation. Stipends are awarded competitively, and recipients are requested to participate in the annual “State of North Carolina Undergraduate Research and Creativity Symposium” (SNCURCS), which is jointly sponsored through a collaborative partnership, between NCICU and the University of North Carolina. All students interested in applying for a stipend must have a faculty mentor - who also is willing to mentor the student’s participation in the Symposium. Stipends are awarded in either $2,000 or $1,000 increments. Students wishing to perform research, advised by a faculty mentor, during summer and fall 2015 may apply for $2,000 stipends. Students wishing to commence their research upon returning to campus in fall 2015 may apply for $1,000 stipends.

Yarbrough Research Grants (Collegiate Academy of the NC Academy of Sciences CANCAS)
https://sites.google.com/a/ncsu.edu/ncas/grants-awards/yarbrough-grant
Supports undergraduate research by providing grants to students who submit grant proposals judged meritorious of support. In recent years, grants have ranged from $30 to $500+.

Sigma Xi Grants-in-Aid of Research (GIAR)
https://www.sigmaxi.org/programs/ethics-and-research
Grants up to $1,000 to students from all areas of the sciences and engineering. Designated funds from the National Academy of Sciences allow for grants of up $2,500 for vision related research. Students use the funding to pay for travel expenses to and from a research site, or for purchase of non-standard laboratory equipment necessary to complete a specific research project.
The Tau Omega Chapter of Beta Beta Beta was installed at Davidson College on April 28, 1995. TriBeta is an honor and professional society for students of the biological sciences, particularly undergraduates. It seeks to encourage scholarly attainment, to cultivate intellectual interest in the life sciences, and to promote a better appreciation of the value of biological study. It encourages undergraduate research and "emphasizes a three-fold program: stimulation of scholarship; dissemination of scientific knowledge; and promotion of biological research." TriBeta members receive Bios, a journal of scientific reports by members of the society. Members can submit original research articles to this journal for publication and can present papers at district and national conventions of the organization. Members and chapters are also eligible to compete for various awards given by the national organization.

The Tau Omega Chapter invites students to become regular members during their sophomore, junior, or senior year of study. The requirements for membership are:

- declaration of Biology as a major
- completion of at least three courses in biology
- a 3.2 GPA in the major

The initiation fee for regular members is $50.00 (life membership). Any biology major with a GPA of at least 3.0 is eligible to become an associate member. Associate member dues are $40.00. Associate members may become regular members if they meet the requirements of regular membership and pay an additional $10.00. Membership invitations are sent to eligible students each spring semester, and the initiation ceremony for new members occurs during the same semester.

TriBeta and the BioSociety function jointly in sponsoring events throughout the school year. Currently, the officers of both organizations are the same.

Local chapters, such as Tau Omega, hold business meetings, sponsor presentations of scientific research by students or outside speakers, and undertake various projects. The outreach project with Davidson Elementary School is an example of one project of the Tau Omega chapter and the BioSociety.

The charter, coat of arms and key of the Tau Omega Chapter of Beta Beta Beta are located in the Biology Department office.
Davidson Biology Awards

Tom Daggy Biology Award
The Tom Daggy Biology Award was established in honor of Dr. Tom Daggy, who taught in the Department of Biology from 1947 to 1981. This award recognizes outstanding academic achievement, leadership and service, and a love of exploring the secrets of life. Award winners are selected during the spring semester from among senior majors by the biology department faculty. The selection is based on the student's academic achievements while at Davidson and his/her contribution to the Biology Department. Contributions may include a variety of activities, including but not limited to research, active involvement in BioSociety/TriBeta or other departmental activities, service to the community or the department (e.g. serving as a teaching assistant, tutoring, etc.). The Tom Daggy Award is presented at Spring Convocation. The recipient receives a monetary award and a certificate and her/his name is recorded on a plaque in the Biology office.

Recent Daggy awardees:
2017 – Annalee Tutterow
2016 – Elizabeth Brunner
2015 – Devon Harris
2014 – Justin Strickland
2013 – Elene Clemens
2012 – Alexis Valauri-Orton
2011 – Evan Eskew
2010 – Natasha Meyer
2009 – Laura Bergner & Kelli Carroll
2008 – Erin Zwack & Shannon Pittman
2007 – Kristen Cecala
2006 – Leslie Smith & Sara Durnbaugh
2005 – Sarah Davis & Joy Hester

Sigma Xi's Undergraduate Research Award
The Charlotte chapter of Sigma Xi, Scientific Research Society, honors top undergraduate research scientists from regional colleges and universities. At Davidson, biology faculty nominates individual students for this award and the entire department selects student(s) to represent the department at the Celebration of Undergraduate Research. The student researchers and their faculty mentors are honored at the Celebration. Each student receives an award certificate and the department represented by the student receives a plaque for display.

Recent Sigma Xi awardees:
2017 – Annalee Tutterow
2016 – Hannah Itell & Morgan Shannon
2015 – Hannah McMillan
2014 – Eric Sawyer
2013 – Max Kern
2012 – Daniel Cook
2011 – Pallavi Penumetcha
2010 – Olivia Ho Shing & Karen Hasty
2009 – Will DeLoache
2008 – Emma Garren & Alex Greer
2007 – Leigh Anne Harden
2006 – Julie Ruble & Matthew Gemberling
2005 – Sarah Davis & Joy Hester
Davidson Biology Events & Resources

BioLunch
All biology students and faculty are invited to BioLunch, an informal event held almost every Friday at 12:30 in Commons. Look for the table with the Biology sign. The Biology Department pays for lunches of students who do not have a Commons meal plan.

Biology Newsletter
The Biology Newsletter is a weekly electronic newsletter sent to biology majors and students currently or recently enrolled in a biology course. It distributes information on events, seminars, scholarships, research opportunities, & accomplishments of Davidson biologists. To add announcements or subscribe to this newsletter please contact Jenny Ingraham (jeingraham@davidson.edu).

Facebook and Twitter
Keep up with Biology events by liking the Biology Department Facebook Page, (Davidson College Biology Department) Instagram, (davidsonbio), and on Twitter (@DavidsonBiology)

Biology Seminars
www.davidson.edu/academics/biology/activities-and-events/seminar-series
The Biology Department Seminar Series hosts guest speakers from universities and research institutions around the country to share their research results. Seminars are typically held in the late afternoon. Contact Dr. Wessner, the Seminar Series Coordinator, with speaker suggestions and questions.

Darwin’s Birthday Celebration
Since 2002, the Davidson Biology Department has been celebrating Darwin Day, an international event usually held on or around Darwin’s birthday, February 12th. The celebration at Davidson includes dinner, birthday cake, scientific door prizes (including a coveted Chlamy hat knit by Dr. Peroni), and a special appearance by Charles Darwin. Contact Dr. Sarafova (BioSociety & BBB advisor) for more information.

Biology Banquet
Near the end of each spring semester, senior biology majors are invited to a banquet to celebrate the year and announce the Sigma Xi and Tom Daggy award winners.

BBB Induction Ceremony
New members of Beta Beta Beta (BBB), the biology honor society, are inducted during a short ceremony. Watch for an invitation sent to all eligible declared biology majors in the spring semester. Contact Dr. Sarafova (BBB advisor) for more information.
Planning Your Future

Like it or not, the process of leaving Davidson College begins the moment you accept a place as a first year student. The purpose of a college education is to prepare you for a career, which may involve further training in graduate or professional school. As an entering first year student, some of you may have a clear plan for your future. Others may have very few plans when walking across the stage at graduation. Hopefully most of you will be exploring different career options throughout your four years at Davidson. Some will decide to attend graduate or professional school immediately after graduating; others will decide to look for employment until making a decision about graduate or professional school. Still others will move immediately into a career-track position and choose not to go onto graduate or professional school. Regardless of the path you pursue, at some point you will decide whether you want a career in a biologically related area.

How do you decide on a career as a biologist? Here is some advice from the Biology department:

• Determine what you like to do, what interests you the most, what you do well.

• Determine careers that will incorporate your interests and strengths as you define them.

• Do some research on careers that interest you:
 - Interview professionals in those fields - take them to lunch or coffee. Ask her/him how they got their current jobs? What courses or graduate programs would s/he recommend as preparation for a career in their field?
 - Gather information from various sources, surf the web, and ask everyone you know (family members, friends, the Career Services, your advisor, Davidson alumni, etc.). Learn as much as possible about the daily lives/responsibilities of individuals in various careers that interest you. Can you see yourself in that role? What additional training, if any, will you need to enter that career?
 - Get some experience: internships, summer employment, volunteering etc., in areas of your interest(s).
 - Obtain skills (writing, computer applications, and using research equipment) that are appropriate to the field you hope to pursue.

• Determine if your career interest requires graduate or professional school.
Career Ideas for Biology Majors

So you like biology and you are good at biology, but what can you do with a degree in biology?

Career choices available for an individual with training in the biological sciences are as diverse as the discipline of biology itself. A degree in biology opens a lot of doors, some of which are more obvious than others. Similarly, some of these careers are highly specialized, while others are not. Jobs for the biologist are found in the private sector, with federal agencies and with nonprofit organizations.

Helpful websites include:
http://www.aibs.org/careers/
http://www.nationalacademies.org/careerguides/
http://www.si.edu/encyclopedia_si/nmnh/careers.htm
http://www.nap.edu/openbook.php?record_id=5129

Corporate positions
- Salesperson for medical, pharmaceutical or biomedical products
- Research scientist/technician
- Consultant - Environmental impact assessments, agricultural consulting in developing countries
- Occupational safety
- Hazardous waste management specialist
- Toxicologists/risk assessment specialist
- Industrial hygienist

Animal and human medicine
- Physician
- Veterinarian
- Dentist
- Nurse
- Physical therapist
- Optometrist
- Chiropractor
- Pharmacist
- Genetic counselor
- Osteopathic physician
- Food scientist/nutritionist
- Hospital administrator
- Veterinary or animal technician
- Animal psychologist

Education/Research
- College/University professor
- K-12 teacher

Federal agencies
- Soil conservationist/scientist
- Wildlife biologist
- Microbiologist
- Fishery biologist
- Environmental engineer/scientist
- Natural resource specialist
- Park Ranger
- Forester
- Outdoor recreation planner
- Hydrologist
- Ecologist
- Botanist
Career Ideas for Biology Majors (continued)

Geographic information systems (GIS) specialist
Economic botanist
Horticulturist
Plant pathologist

Nonprofit organizations
Administrator
Scientific staff
Educational staff
Public relations
Fund-raiser

Other
Environmental Law
Journalist/writer
Animal breeder
Biostatistician
Medical/scientific illustrator
Entrepreneur/ecopreneur
Ecotourism specialist
Finding a Job

One option for your life immediately after Davidson is to find employment. Some biology graduates may work for a year or several years before attending a graduate school or professional school. Others may immediately move into career-track employment and forego further schooling.

So how do you find a job that will reassure your parents that you won't be depending on them forever and that your Davidson tuition was well spent?

1. Think about your career goals (see above) and approach your job search with those goals in mind.
2. Talk with biology faculty and any other individuals who may have information on jobs that fit your interests. Hone your networking skills early!!
3. You may want to target a geographical area or look for job opportunities at a graduate of professional school that you may be applying to at a later date.
4. Visit the Center for Career Development and listen to their voice mail messages (REALLY!). The biology department will also send occasional voice mail messages to seniors regarding job opportunities.
5. Identify Davidson alums working in an area you want to pursue. Ask them for aid in finding a position or contacts they may have that would be useful to you.
6. Develop your resume (see Center for Career Development for workshops, etc.) and send it to potential employers.
7. Sharpen your interviewing skills. Again ask the Center for Career Development for help in this area or ask some biology faculty members if they would be willing to give you a practice interview.

Center for Career Development at Davidson

"The Center for Career Development at Davidson provides students with the means to explore career interests and prepare for life after Davidson." This includes graduate school, career-related employment, etc. The Center for Career Development is located in the College Union, and has a good deal of information on biology-related internships, job opportunities and graduate schools. It will benefit students majoring in biology or considering a biology major to visit this office. The initial visit will give you an overview of the resources available in this office. When you are seeking internships, jobs, etc., you will know what information is available and how to obtain that information. The list below highlights some of the services provided by the Center for Career Development:

- Career counseling
- Internship and summer job information
- Alumni contacts for internships and jobs
- Career resources library
- Graduate school information and guidance
- Testing - GRE preparation, GRE testing information
- Seminars and workshops: Resume writing, interviewing techniques, job hunting tips, exploring graduate and professional schools and fellowships, etc.
- Mock interviews
- Campus corporate recruiting
Support for Post-Bac Study Abroad

Watson Fellowship
http://watson.foundation/fellowships/tj
Focused year of travel and learning on a topic of the student’s choosing. Students may NOT go to a country they have visited before, nor to a country on the State Department’s travel advisory list. Fellows are NOT allowed to enroll or attend a school. The Fellowship experience is intended to provide Fellows an opportunity to immerse themselves in cultures other than their own for an entire year. Citizenship and GPA are not crucial for winning a Fellowship. See Dean of Students Office. Campus nominations are made in the Fall Semester with written proposal due about October 1. First on-campus interview about mid-October. Only eligible as a senior.

Fulbright Grants
http://www.cies.org/
Allows students to do research or advanced study for one year in a foreign country. Students can also teach English through the Fulbright, but host country language proficiency required. No age limit.

Rhodes Scholarship
http://www.rhodesscholar.org/
Awarded for two or three years of study at Oxford University. Highly competitive but worth considering if GPA ≥ 3.8.

Luce Foundation Fellowships
http://www.hluce.org/lsprogram.aspx
Provides one year of living and working in an Asian culture. Biological work/study opportunities available. Cannot have prior Asia experience. This program is highly competitive program but worth considering if GPA ≥ 3.7.

Marshall Scholars Program
http://www.marshallscholarship.org/
Marshall Scholarships finance young Americans of high ability to study for a degree in the United Kingdom. This highly competitive program is worth considering for students with GPAs ≥ 3.8.

Davidson’s Graduate Fellowships Committee & Office
www.davidson.edu/offices/fellowships-office/fellowships-committee
The Graduate Fellowships Committee is a standing appointive committee of the College. Its members advise students on their fellowship and scholarship applications, help students plan their studies after Davidson, administer nominations for some graduate fellowships and scholarship competitions, hold mock interviews, read and respond to draft application essays and generally lend a hand during the often trying and always challenging application process for items like Rhodes Scholarships, Marshall Scholarships, Mellon Fellowships, National Science Foundation Grants, Fulbright Grants, Luce Scholarships, Goldwater Scholarships, Mitchell Fellowships, and the Davidson College Smith Scholarship, among others. The committee seeks to identify early in their Davidson careers, students who are likely candidates for graduate fellowships and scholarships and holds occasional information sessions for these students. The VPAA’s office and Graduate Fellowships Committee members offer some specific information on several Graduate Fellowships and Scholarships of interest to Davidson students (e.g. Marshall, Rhodes, Gates Trust, Luce, Watson, Smith). This list includes some pre-graduate fellowships (e.g. Goldwater, Beinecke, Truman). There is no age limit for this committee to help Davidson alumni. Contact Dr. Ted Olgadez for more information.
Graduate & Professional Schools

Biology Majors post-graduation:

BIOLOGY MAJOR ALUMS IN THE CLASSES 1984-2014 (data compiled in 2014)

<table>
<thead>
<tr>
<th>Field</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical school</td>
<td>32.9%</td>
</tr>
<tr>
<td>Graduate school</td>
<td>31.1%</td>
</tr>
<tr>
<td>Veterinary school</td>
<td>3.1%</td>
</tr>
<tr>
<td>Dental school</td>
<td>2.2%</td>
</tr>
<tr>
<td>Law school</td>
<td>2.4%</td>
</tr>
<tr>
<td>Nursing</td>
<td>2.7%</td>
</tr>
</tbody>
</table>

Some of the Many Graduate Schools Attended by Biology Major Alumni:
Appalachian State University, Auburn University, Baylor University, Boston University, Cambridge University, Columbia University, Duke University, East Carolina University, Emory University, Georgia State University, Harvard University, Howard University, Johns Hopkins University, Medical University of South Carolina, NC State University, Northwestern University, Oregon State University, Princeton University, Purdue University, Scripps Institute, Stanford University, SUNY Albany, Syracuse University, Texas Tech University, Tufts University, Thomas Jefferson University, Tufts University, University of Arizona, University of California at Berkeley, University of California Davis, University of California San Diego, University of Colorado, University of Florida, University of Georgia, University of Guelph, University of Kansas, University of Kentucky, University of Maryland, University of Miami, University of Michigan, University of Notre Dame, UNC - Chapel Hill, UNC - Wilmington, University of Rhode Island, University of Rochester, University of South Carolina, University of South Florida, University of Salamanca (Spain), South Carolina, University of South Florida, University of Salamanca (Spain), University of Kansas, University of Kentucky, University of Pennsylvania, University of Tennessee, University of Washington, Western Reserve University, University of Wisconsin, Wright State University.

Some of the Many Professional Schools Attended by Biology Major Alumni:
Albany Medical College, Auburn University, Baylor University, Boston University, Bowman Gray School of Medicine, Columbia University, Drexel University, Duke University, East Carolina University, East Tennessee State, Eastern Virginia University, Emory, Johns Hopkins University, Louisiana State University, Medical College of Georgia, Medical College of Virginia, Medical University of South Carolina, Meharry Medical College, Milwaukee College, New Jersey Medical School, NC State, Northwestern University, Ohio State University, St. Louis University, Southwestern University, St. Louis University, SUNY - Buffalo, Tulane University, University of Alabama, University of Arkansas, University of Colorado, University of Chicago – Pritzker School of Medicine, University of Connecticut, University of Florida, University of Georgia, University of Illinois, University of Iowa, University of Kentucky, University of Louisville, University of Maryland, University of Michigan, University of Minnesota, University of New Mexico, University of North Carolina at Chapel Hill, University of Oklahoma, University of Pennsylvania, University of Pittsburgh, University of South Florida, University of Tennessee, University of Texas, University of Virginia, University of West Virginia, Vanderbilt University, Virginia Commonwealth University, Wake Forest University, Washington University.

Applying to Professional Schools – Resources at Davidson
Dr. Naila Mamoon, Premedical and Preveterinary Advisor

Medical school and allied health: www.davidson.edu/academics/pre-medicine
Veterinary medicine: www.davidson.edu/academics/pre-vet

Law school: www.davidson.edu/academics/pre-law
Applying to Graduate School

Most graduate programs in biology are designed to produce research scientists. The number of PhDs produced by graduate schools in recent years exceeds the number of available research positions. Consequently, there are a large number of underemployed PhDs. The decision to go to graduate school, therefore, is one that should be made only after a great deal of personal introspection and exploration of fields of study. **Prior to deciding to attend graduate school, you should:**

- Evaluate your strengths and weaknesses (academic and personal). Strong motivation and persistence are very important. Intelligence, initiative, self-motivation, and self-discipline are attributes that are critical to a successful graduate school experience.
- Determine what you enjoy doing and why you enjoy it. Do you like paying attention to detail? Do you like exploring new ideas? Are you curious? What disciplines of biology did you enjoy studying the most in college? Do you like to interact with others to try to solve a problem?
- Evaluate your career objectives. Do you want to be a research scientist in industry? Do you have some idea of what life in this position would be like? How can you find out? Do you want to teach at a college or university? What are the differences between a position at a college and at a university? Do you think you’d like teaching? Do you want a career associated with making policy decisions for a federal agency? A conservation organization? What have you experienced that will help make this decision? What do you still need to experience to help you make this decision?
- Determine if a master’s degree or a Ph.D. is necessary for your career objectives. A Ph.D. requires a longer time commitment initially, and frequently leads to teaching and/or research career. A Master’s degree allows exploration of research interests with less time commitment than a Ph.D. While pursuing a Master’s, you may decide that you like the field and want to continue in this area for a Ph.D. You may also decide to try another avenue of research for a Ph.D. or terminate your schooling at the Master’s level.
- If you do not want to proceed directly from your undergraduate studies to graduate school, consider working in a biology-related field to gain experience that will help you ‘trial run’ career options. Note: It is advisable to take the GREs during your senior year or shortly after graduation if you think you may apply to graduate school at some time in the future.

When you have made your decision to apply to graduate school, you need to **decide to which schools and programs you will apply.** How do you choose graduate schools?

- Talk to professors in the department, particularly individuals teaching in the areas that interest you the most. Ask these professors about their graduate school and others they would recommend in their field.
- The library and web have sources that rank graduate programs in different disciplines.
- Read the primary literature in the discipline of your interest. Find papers that interest you the most. The principle investigators for those papers may be individuals you want to contact regarding their graduate programs. See which institutions are represented most often in the papers found in these scientific journals.
- Contact professors with whom you would like to work. Explain your interest in their research program. Offer to volunteer or become an intern in their laboratory.
- Attend biology department seminars and talk to the individuals presenting the seminar about their graduate school. Volunteer to be in the student group that takes this individual out to lunch.
- Surf the web. Many graduate schools have detailed information on their programs and faculty members have pages explaining their research interests.
- Visit potential grad schools, talk with grad students, and talk with possible thesis advisors.

When you have narrowed your list of potential graduate schools and determined the application procedures for each department and school, you should **write to potential faculty advisors.** In each email:

- express your interest in pursuing graduate work with him/her;
- explain how you developed your interest in this area, including brief descriptions of your undergraduate research;
- describe your current research interests as it pertains to obtaining a graduate degree;
Applying to Graduate School (continued)

- discuss your overall career goals (research and teaching at a university, working for industry, etc.);
- ask whether he/she would consider serving as your major professor.
- Include a curriculum vitae (C.V.; the academic version of a resume) with your letter. This should include your educational background, publications or presentations at conferences, research projects, and academic awards. Ask a Biology faculty member to review the letter and C.V.

Graduate Record Examination (GRE) info:
Most graduate school programs require you to take the GRE general exam and a subject exam (e.g. biology). In highly competitive graduate programs, the GRE scores may be used to limit the number of candidates in the pool during the first phase of applicant screening. For better or worse, these scores are an easy, objective means of culling applicants. Hence, doing well on these exams is crucial for entrance to most graduate schools. Excellent grades and/or an outstanding research project may counteract modest GRE scores, but you will have to be much more aggressive in proving your worth to the graduate program if the GRE scores are not competitive with other applicants. Consider taking the general exam during the spring of your junior year and the subject exam no later than December of your senior year. You can retake either portion of the exam.
- Information and registration is available via Davidson’s Career Services Office.
- In preparing for the GRE, take practice exams available from the testing service. The bookstore sells GRE preparation manuals. In addition, Kaplan offers GRE preparation courses. Another useful tool for studying for the subject exam is your introductory biology text.

The graduate school application process:
- Most graduate school application deadlines fall in December or early January. Begin work on your applications no later than early November.
- Your application should be tailored to the specific program to which you are applying. Your statement of purpose should be clearly written and as specific as possible. Address your academic strengths and personal qualities. Remember that you are "selling" yourself and need to give the reviewers reasons to select you above other highly qualified candidates. You should generally discuss all research experiences you have had, including independent research, group investigations, summer research, etc. Detailed descriptions of research related to your proposed field of study will be most useful to the individual professors in the department to which you apply.
- An official transcript will be required for each program to which you apply. In addition, if you decide to apply to schools not listed by you when you took the exam, you need to arrange with the Educational Testing Service to send your scores to these additional schools.
- Letters of recommendation from Davidson faculty and others will be critical to your application. Choose your references wisely. Don't be afraid to ask if the referee can write you a strong letter of recommendation. Ask for letters of reference at least one month prior to the application deadline.
- How many schools should you apply? A general rule is to apply to two or three programs that match your area of interest. Aim for the schools rated best for your area of interest, but also apply to 1-3 schools not rated as highly, in the event you are not accepted into your top choice schools.
- If your application receives a favorable review, you may be invited to visit the university. The graduate program will usually provide your plane fare and accommodations during the visit. If you will be given an interview during your visit, prepare before you leave Davidson by doing mock interviews with biology faculty or through Career Services. Give well-thought, sincere reasons for wanting to attend that graduate school. Be enthusiastic! You should also take advantage of this opportunity to do your own “interviewing” of administrators, faculty and students in the program.

Questions for the director of graduate studies/chair of the department:
- What are course requirements? How are graduate students funded? How long does it take for most students to complete their degree? How many years of funding are guaranteed to students who make suitable progress? What are the responsibilities and time commitment associated with teaching assistantships? How much turnover is there within the faculty?
- What is the department's philosophy?

Questions for your potential major professor(s):
Applying to Graduate School (continued)

What are potential research projects for your thesis? What are other students in the lab doing? What type of positions do former graduate students now hold? How are current students funded? How long does it take for students to complete their degrees? How does s/he feel about alternative careers (e.g. teaching rather than research)?

Questions for graduate students:
Ask all of the above questions and: Are you happy working and living here? How much time does your major professor spend with you? What are his/her expectations of you as a graduate student? How do you feel about your interactions with faculty, postdocs, and grad students? How is your research progressing? Do you feel satisfied with your accomplishments? What opportunities do you have as a graduate student (attending scientific meetings, etc.)? What is the working environment? Do you have the financial and instrumental support that you need for your work?

Questions for other faculty in the program:
Ask same questions that you asked of the director of the program and potential major professors. Other questions you might pose: Is there cooperation among faculty members and graduate students within the program? Are you available to help graduate students working with other faculty members? On how many graduate students’ committees do you serve?

• There are, no doubt, many more questions you will think of during your visit. You are trying to determine if you will have a rewarding experience as a graduate student in that program. Look for enthusiastic responses and for indications of mutual respect and cooperation among faculty and students.

Accepting a graduate school offer
• If you are fortunate enough to be admitted to more than one program, you will have to decide which one you will attend. This will be a very critical decision and, again, it should be approached with considerable thought. Visiting the schools is crucial, if you have not already. You will want to compare the institutions by interviewing graduate students and faculty. You should be comfortable with the individuals with whom you will be working, particularly your major professor. You should have financial support which allows you to pursue your studies and research without needing to resort to part-time or summer jobs. You will want a challenging program and you will want to be surrounded by enthusiastic and highly motivated individuals.

• If you are only admitted to one program, you must decide if that program will meet your needs. If you are not convinced that the program to which you were accepted is right for you, don't accept the offer. You can spend a year or two gaining work experience and then apply to schools you think will be more appropriate for your interests. Another option to consider is to enroll in a Master's degree program before applying as a Ph.D. candidate at the schools of your choice. The job market for Ph.D.’s in science is tight, so you will want to pursue your studies at one of the best possible schools. The individuals you meet in graduate school will be your mentors and colleagues throughout your professional career. Look for programs that will expose you to the leaders in your chosen field.

Financing Graduate School:
Generally speaking, graduate students in the sciences are supported by the institution via teaching or research assistantships. These positions pay for tuition, as well as provide a salary. In addition to institutional support, graduate fellowships are available from a number of agencies and foundations. Information on many fellowship opportunities is available in the Career Services Center. Some of these are very prestigious and biology students who are planning to attend graduate school should apply. There are also grad school fellowships specific to an institution.

• National Science Foundation (NSF) Graduate Research Fellowships
 www.nsf.gov/funding/pgm_summ.jsp?pims_id=6201

• National Consortium for Graduate Degrees for Minorities in Engineering & Science (GEM)
 www.gemfellowship.org

• UNCF/Merck Graduate Science Research Dissertation Fellowships
 http://umsi.uncf.org/sif
Biology Department Statement on Plagiarism
http://bio.davidson.edu/dept/plagiarism.html

Plagiarism is representing another's ideas or words as one's own. Plagiarism, as a form of cheating, is a violation of Davidson's Honor Code.

The statements above may seem straightforward, but plagiarism can take many forms, some of which constitute a gray area in people's understanding of the issue. Furthermore, there are variations among different academic fields concerning citation styles and expectations. The purpose of this document is to clarify WHEN and HOW to cite your sources when writing for a biology class. Note that self-plagiarism, or the use of your own previous work in another class, is also an Honor Code violation unless re-use of your work is expressly allowed by the professor. Your biology professors expect original work to be submitted in their classes.

WHEN to cite your sources (Click here for HOW..)

Direct quotations
Let's start with the obvious. If you repeat someone else's words verbatim, you must enclose those words in quotation marks and provide a citation. For the citation to be complete, there MUST be a properly formatted in-text citation at the end of the sentence and a corresponding entry in your list of references (see section below on how to cite sources). It is not sufficient simply to name the source within the sentence. Omitting quotation marks and/or a complete citation is considered plagiarism. Keep in mind that direct quotations are not commonly used in scientific writings such as lab reports or grant proposals but can be appropriate in biology essays and term papers. Make sure that any direct quotations flow smoothly within your own thought progression in the assignment; your task is to synthesize the relevant literature, not just copy and paste direct quotes from each source or provide a summary sentence for each.

Paraphrasing
Paraphrasing is restating someone else's ideas while not copying verbatim. There are acceptable and unacceptable ways to paraphrase, and it is crucial that you understand the difference. Unacceptable paraphrasing includes any of the following: 1) using phrases from the original source without enclosing them in quotation marks; 2) emulating sentence structure even when using different wording; 3) emulating paragraph organization even when using different wording or sentence structure. See examples below.

Unacceptable paraphrasing--even with correct citation--is considered plagiarism. When you do paraphrase in an acceptable manner, a proper citation is always required. Omitting a citation is considered plagiarism.

<table>
<thead>
<tr>
<th>Original text</th>
<th>Unacceptable paraphrasing: copying phrases without using quotation marks</th>
<th>Unacceptable paraphrasing: emulating sentence structure (here, paragraph structure is also emulated)</th>
<th>Unacceptable paraphrasing: emulating paragraph structure (even though sentence structure is original)</th>
<th>Acceptable paraphrasing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Few laboratory creatures have had such a spectacularly successful and productive history as Drosophila. It first entered laboratories about 1900, revealed its talent for experimental genetics to Thomas Hunt Morgan and his students at Columbia University in the early 1910s, and after some ups and downs in status is still going strong almost a century later. (from Kohler, R.E. 1994. The Lords of the Fly. The University of Chicago Press, 321 pages.)</td>
<td>Despite some ups and downs in status, nearly a century after the fly revealed its talent to Thomas Hunt Morgan and his students, Drosophila genetics research continues its spectacularly successful history (Kohler, 1994).</td>
<td>No model organism has been so amazingly useful and effective as the fruit fly. The fly came on the scene as an experimental tool at the beginning of the 20th century, was adopted by Thomas Hunt Morgan and his Columbia pupils at Columbia University around 1910, and (despite some fluctuations in attention paid to it) is still a widely used experimental system (Kohler 1994). (Within each sentence, can you trace the structural similarities?)</td>
<td>Drosophila is model organism with a rich and useful legacy. Upon arriving on the scene at the turn of the century, the fruit fly soon became the organism of choice for Thomas Hunt Morgan and his Columbia University pupils. Despite fluctuations in status, fly research is still central to the progress of genetics (Kohler, 1994). (Trace how the ideas flow in a manner identical to the original.)</td>
<td>Thomas Hunt Morgan and colleagues at Columbia University were among the first to use the fruit fly Drosophila as a model organism, adopting it as an experimental system around 1910. Since then, the popularity of the fly has waxed and waned somewhat, but the breadth and depth of current research indicates that Drosophila continues its legacy as an incredibly important research tool (Kohler, 1994).</td>
</tr>
</tbody>
</table>
Biology Department Statement on Plagiarism (continued)

Describing scientific findings that are not your own
In many forms of scientific writing, you are expected to compile and summarize experimental results from other researchers. Using in-text citations, you must give credit for every mentioned scientific fact that you did not discover yourself, with the exception of facts that are common knowledge, such as "all cells come from pre-existing cells." (If you are not sure what is common knowledge, play it safe and provide a citation; however, if a fact is treated as common knowledge in your source, then you can generally do the same.) Technically, you should provide a citation for each distinct idea, and that sometimes means including one citation in the middle of a sentence and then another citation at the end. However, if a series of sentences clearly go together, with all of them describing findings from a single source, it is acceptable to cite the source only once (instead of after every sentence).

Proposing an idea that is not your own
If you propose a bit of analysis or interpretation that originated in someone else's brain, you must provide a citation.

Using images from the WWW or print sources
In your papers and web page assignments, the use of an image (whether photocopied, scanned, or downloaded) that you did not create is the equivalent of a direct quotation. You must include both an in-text citation next to the image and a corresponding entry in your list of references. If you are designing a web page that will be available publically, you must seek permission to use any borrowed images.

HOW to cite your sources (Click here for WHEN..)
Biologists expect in-text citations and then a list of references at the end of the work. There are two main approaches: AUTHOR-DATE and NUMERICAL. The author-date method is most common. Here is a quick overview of these two formats.

General approach	AUTHOR-DATE	NUMERICAL
Examples of in-text citations | Sometimes, depending on the particular mutation, the same gene can be involved in dominant or recessive deafness (Kelsell et al., 1997). Several genes involved in syndromic and nonsyndromic deafness have already been identified and are reviewed in Kalatzis and Petit (1998). (adapted from Kubisch et al., Cell 96: 437-446) | Kuru was the first human prion disease shown to be transmissible, by inoculation of chimpanzees with autopsy-derived brain tissue (1). It is hypothesized that kuru originated from consumption of an individual with sporadic CJD (2), a disease with a remarkably uniform worldwide incidence of around 1 per million and a lifetime risk of around 1 in 50,000. (adapted from Mead et al., Science 300: 640-643)

Rules and variations for in-text citations:
A. For the author-date type of in-text citation, if the source has two authors, list both last names, as in (Roberts and Gonzalez, 1998); if the source has three or more authors, use the format with et al.as in (Jackson et al., 1998). The abbreviation et al. should be italicized, with a period after the al.

B. If you have already mentioned the authors’ names in the sentence, your in-text citation can consist of just a date: Jones and Smith (1992) demonstrated that the D1S80 marker is not linked to chocolophilia.
C. The in-text citation can be placed in the middle of a sentence to indicate that only part of the information in the sentence is taken from the source. Example: The cho gene product metabolizes aromatic amino acids (Tobler et al., 1994) and physically associates with the van gene product (Breyer et al., 1997).

D. If you cite multiple papers for a single idea, include all in-text citations within one set of parentheses and separate each citation with semi-colon, as in (Tong et al., 1997; Gallagher et al., 1998).

E. Do not indicate the source page number in your in-text citation.

F. If you cite a source, you are implying that the idea in question originated in that source. If your source actually cites someone else for the same idea, you should track down and cite the original. Only sources that you have examined directly should be included in your reference list. If it is not possible to obtain the original source, you can do the following: (Robertson et al., 1992, as cited in Burgess and Leonard, 2001). Sometimes it is useful to cite a review paper, if there is an appropriate one available—then you don’t need to cite as many individual sources. Your in-text citation would read something like (reviewed in Smith and Jones, 2001). If you don’t know how to distinguish a review paper from an original research paper, ask your instructor. A good indicator of an original research paper is a section (often called Materials and Methods, or just Methods) describing specific experimental techniques. Some journals, however, include descriptions of methods in odd places (e.g. embedded in the references, as in Science), so the absence of a Methods section per se is not a sure sign that the paper you’re looking at is a review paper.

G. If you use the numerical approach, the numbers themselves can be enclosed in either parentheses or brackets, or they can be superscripted. Just be consistent throughout the paper.

Rules and variations for reference lists:

A. Citing journal articles:
Biologists (unlike members of some other fields) have not agreed on a standard way for formatting references. For a given assignment, check the course syllabus and other handouts for guidance on what reference format to use. If you do not find specific instructions, you will be safe if you follow the following common format (which is also illustrated in the examples in the table above):

Primary Author's Last Name, Initials, Other Author's Initials, Last Name. Year. Title of article (only capitalize first word). Journal and volume number: page numbers.

In different journals you will see that each publisher seems to have a different style for formatting entries in reference lists. Aspects that vary among different journals include:
--whether initials come before or after an author's last name
--whether the date comes before or after the paper title
--whether the title is even included (journals like Science and Nature leave it out as a space-saving device)
--whether the date is enclosed in parentheses
--whether the journal name is italicized
--whether the volume number is italicized or in bold face
--whether there is a colon or comma after the journal volume number
--whether the issue number (in addition to the volume number) is included
--whether the whole page range or just the first page number is listed
--whether different components (e.g. authors, title, journal, etc.) are in boldface.

Whatever format you are expected to use, you should be completely consistent in how you format your list of references.

B. Citing books:
Use the following format to cite a whole book:
Author Last Name, Initials. Date. Title. Publisher, number of pages.

Use this format for citing book chapters:
Author Last Name, Initials. Date. Title of chapter. In: Title of book (editors). Publisher, number of pages.

C. Citing web sites:
If you obtain from the WWW a journal article originally published in a print journal, cite the article exactly as you would for a print source.
If you obtain a peer-reviewed article from one of the growing number of online-only journals, cite the article as for a print source, but also append <URL>. Accession Date.
Most other web sites are not peer-reviewed, and so their reliability is highly variable. It is rare to use such non-peer-reviewed web sites as sources for scientific writing. For any given assignment, check your course syllabus or assignment handout to see if you are permitted to use such sources. If so, then it is still up to you to evaluate the reliability of a web site; consider the credentials of the author, the purpose of the web page, and the date of the last revision, among other things. For more guidance on evaluating web pages, see the Evaluating Web Sites Tutorial from the Ohio State Libraries.

To cite a web site, use the following reference format:
Author Last Name, Initials. Date page created or revised. Title of page. Title of larger work if applicable. <URL>. Accession date.

See links at bottom right for more information and examples for citing different types of sources in biology assignments.

| Davidson sites on plagiarism: The Honor Code Dr. Epes's address to the incoming class, 2002 Department of History statement on Plagiarism | Plagiarism views from elsewhere: Indiana University Georgetown University UC Davis Northwestern University Princeton University Dartmouth University Purdue University | Other sites on citing sources for a biology assignment: Lewis and Clark Biology Dept Writing Guidelines Earlham College Biology Dept- How to Cite Sources ONLINE! Instructi |
Safety

https://www.davidson.edu/academics/biology/facilities/lab-safety

All students enrolled in biology courses at Davidson College are trained in laboratory safety. The course instructor will conduct this training during the first laboratory meeting. Students must sign a form after this training indicating they have completed the exercise.

All laboratories are equipped with eyewashes and showers. Consult the Davidson College Chemical Hygiene Plan in the lab spaces (or on Public/Physical Plant/Safety/Policy Documents/Chemical Hygiene Plan) for information on chemical and emergency procedures. A departmental policy on the use of human body fluids is in effect for all teaching laboratories and research protocols.

SMOKING IS NOT PERMITTED IN WALL, their balconies or patios, or within 20 feet of a window or door. **Sanctions:** All students, faculty and staff are expected to adhere to this policy. Students violating this policy will incur a $25 fine for the first offense and possible Code of Responsibility charges and/or eviction from the residence halls for repeated offenses. Laboratories and other facilities in Wall are closed to students between 12:00 midnight and 6:00 am. At least one other person must accompany students working in the building from 6:00 pm to 12:00 midnight or on weekend days.
Our ability to train students to become successful in the life science fields frequently depends on providing learning experiences involving the use of live animals. Although we attempt to minimize the use of live animals for teaching purposes whenever possible, certain instructional benefits can only be achieved through their use. These benefits include learning skills necessary for handling and working with animals as well as developing and conducting meaningful research projects that contribute to scientific knowledge.

We know that with the decision to use live animals for teaching purposes comes a responsibility to humanely care for them and minimize pain and discomfort whenever possible. Finally, whenever possible and appropriate, we design experiments which use animals of “lower” phylogenetic positions (e.g., invertebrates).

Animal-based research projects require clearly stated educational goals. These projects must be relevant to the course, should be taught by a competent individual who will supervise all activities and follow all government guidelines for the use of animals in research. In addition, all courses offering animals based-projects shall notify the students of all class activities at the beginning of the course, allowing students to have the option to participate in those activities.

The Institutional Animal Care and Use Committee (IACUC) must approve all use of living vertebrates at Davidson College. This includes animal use in research, in classroom laboratories, and in the field. All faculty, staff and students responsible for the care of vertebrate animals must attend the training program on animal care and use. The training program is organized and taught by Meagan Thomas, Animal Care Coordinator.

For information on government regulations, institutional policies and how to submit an animal use request, relevant information can be found at www.davidson.edu/offices/animal-care-and-use or contact Meagan Thomas, Animal Care Coordinator.
Field Work

Students participating in field trips or on independent or group field projects are trained in general field safety and are given specific safety information for the environment in which they are working. Mobile phones are available to take in the field for use in emergency situations.

Release forms: Waivers and release forms are important in documenting that students are aware of the risks and consequences of their research. All students doing field work in classes or in conjunction with a research project need to read and sign a release form.

Vehicles: The use of seat belts and other safe driving practices is mandatory. For field trips associated with departmental courses (other than independent research or group investigations), college-owned vehicles are used to transport students.

Students participating in independent research requiring travel to a field site are usually required to use their personal vehicles, unless using the department field truck. *Students are NOT covered by Davidson College insurance while they are in their own or each others’ cars, even if they are “on College business.”* If the parents own a student’s vehicle, they are required to sign a release form as well. In order to be allowed to drive Biology’s field truck students are required to pass a safety record check, attend vehicle training with Davidson College Public Safety, receive approval and permission by faculty mentor, and follow all Field Vehicle Guidelines for Use. *Students are not covered by Davidson College for any accident that occurs while they are in a vehicle other than a college-owned vehicle, even if they are on College business. Students will be asked to sign a form confirming that the insurance policy holder(s) and owner(s) of the vehicle which they will be driving have been informed of these facts.*

Buddy System: Whenever possible, have students work with another student in the field. This is especially important when students are working at remote sites without much foot traffic. A faculty member, research tech, or student researcher should always accompany students.

Cell Phones: Every student or group of students working in the field should have a cell phone with them at all times.

First Aid Kits: Every field group must have a first aid kit in their vehicle at all times.

Duty Rosters: If at all possible, students’ daily schedules should be posted on a duty roster for the mentor and other students to see. This is especially critical if students will be working alone. If schedules vary unpredictably, students should leave a voice mail message with the mentor of work localities and changes of plan.

Misc Risk Concerns: If any students are known to be allergic to bee stings, they should keep their epi kit (available by prescription only) with them at all times. A Lyme disease vaccine is now available (though it is only 80% effective) for interested students and faculty. Student researchers, especially females, should always be aware of their surroundings (listening to music on ipods, mp3 players, etc. is forbidden during field work). If anything or anyone looks suspicious, the student should leave. Common sense is an important risk management tool.

Landowner Relations: Fieldwork on private property requires verbal permission from landowners (or company representatives) before taking classes or conducting research at those sites.
Field Activity Agreement

http://www.davidson.edu/Documents/Academic%20Department/Biology/Lab%20Safety/Field%20Activity%20Agreement%202016.pdf

I understand and accept the Davidson Biology Department activity noted above exposes me to many risks and dangers. Some of the risks, which may be present or occur include, but are not limited to:

- hazards of physical exertion associated with the activity.
- hiking in rugged wilderness terrain, far removed from the comforts and conveniences of civilization, like medical treatment, transportation, and communication.
- trail hazards which make hiking difficult, including steep slopes, rocks and limbs in and over the trail, slippery rocks and footing, and holes and declivities;
- using tools and gear such as, laboratory utensils, kitchen utensils, knives, power tools, trapping devices, marking and measuring devices, and camping equipment;
- chemical hazards associated with trapping, killing and preserving specimens;
- carrying a backpack and other equipment;
- injuries inflicted by animals and/or plants;
- the forces of nature including lightning, weather changes, hypothermia, hyperthermia, sunburn, high winds, blizzards, avalanches and others not named;
- water hazards including swimming, wading, snorkeling, scuba diving, capsized boat;
- traveling in a vehicle not driven by me.

I understand and accept these risks expose me to, but are not limited to, the following consequences: death, serious neck and spinal injuries which may result in complete or partial paralysis, brain damage, serious injury to my musculoskeletal system and serious injury to other aspects of my general health and well being. I also understand the risks in participating in the field activity include not only the foregoing physical injuries, but also impairment of my future abilities to earn a living, to engage in business, social and recreational activities, and generally to enjoy life.

Understanding the risks mentioned above, and understanding this activity may subject me to rigorous physical exertion, I hereby state I am physically fit to participate in this activity.

In consideration of my being permitted to participate in the field activity, and as a condition of the right to participate in the field activity, I personally assume all risks incident to such activities. I also waive, release, and forever discharge Davidson College and any of its employees or agents from all liabilities, losses, damages or costs of any nature that may arise in connection with my travel to or participation in such activities (including rescue activities associated with the programs). I hereby agree not to file suit against Davidson College or any of its employees. I agree to indemnify and hold the college and employees harmless from all liabilities, losses, damages or costs of any nature that may arise in connection with my travel to or participation in such activities, including rescue activities. The terms of this document shall bind me, my heirs and personal representatives.
Laboratory Use

1. All individuals (students, faculty, etc.) using teaching or research labs in Wall must comply with all safety standards outlined in Davidson College’s Chemical Hygiene Plan. Individuals in all classes using chemicals or animals in the laboratory must have safety and/or animal use training and must sign appropriate forms after completing training.

2. Faculty teaching in laboratories are responsible for making sure the students clean up their spaces after every laboratory session.

3. Every laboratory must be thoroughly cleaned, with equipment stored in appropriate places, at the end of every semester. Faculty members are responsible for cleaning labs where they taught upper level courses or where they taught non-majors biology courses. The lab manager is responsible for cleaning the Biology 111-114 labs. Laboratory Managers are responsible for cleaning labs that they service. If there is no Laboratory Manager assigned to a lab, then the faculty member is responsible for cleaning it at the end of the semester.

4. Biology students may work in teaching or research laboratories outside of the normal laboratory hours, with the following stipulations:
 a. Students have permission from the faculty member teaching the course and have card access cleared through the departmental office assistant.
 b. Students must observe all lab safety regulations, including no food and drink in the labs, wearing goggles, etc.
 c. Students with faculty permission to work in labs do so accepting the safety regulations (as stated in 4b) and associated risks. Faculty members granting such permission are responsible for overseeing the students’ training in the use of equipment, in appropriate experimental procedures and in lab safety precautions.
 d. Students must not work alone when the work involves potentially dangerous experiments or hazardous chemicals. For potentially risky procedures, students must be accompanied by another individual. “Buddies” can only be in labs with a qualified biology student. “Buddies” must be Davidson College students and must swipe their own card to insure accurate safety records.
 e. Students cannot occupy Wall between 12:00 AM and 6:00 AM unless the department chair grants special permission.
 f. All students must sign a “Laboratory Use Agreement form” outlining their responsibilities for laboratory use (http://www.davidson.edu/Documents/Academic%20Department/Biology/Lab%20Safety/labuseagreement.pdf)
Laboratory Use Agreement

I will only access rooms and use equipment where I have been granted permission. Access to a room does not convey unlimited use of the facilities within a room and requires previous training in safety and emergency procedures.

I will only access rooms and use equipment for BIOLOGY courses. Within the permitted room, I may only use equipment on which I have been trained by a faculty or staff member and I may only use that equipment for designated assignments. Students may not grant permission or provide training for each other.

I will only use equipment for which I have prior approval and training by the course instructor. I will follow instructor-approved protocols and safety guidelines. When I am finished, I will clean the laboratory work area and place all equipment, reagents, trash, etc. in designated areas.

I will not eat or drink in the laboratory at any time. Food may not be consumed, stored, or disposed of in any laboratory. Food includes water and gum.

I only qualify to ask for laboratory access outside of normally scheduled times if successful completion of my research requires my presence in the laboratory during that additional, privileged, time period. I understand scheduled classes have priority access to laboratories and equipment.

I will plan my lab work so it will be completed by 12:00 AM. Building access is prohibited 12:00 AM – 6:00 AM and I understand I will be removed by security if I am in the lab during these hours. On the rare occasions my research requires lab access during this restricted time, I will inform my research advisor in advance to ask that s/he apply for an exception through the Vice President for Academic Affairs.

I will not prop lab doors open for any reason. If working alone in a lab, I will close and lock the door for my safety.

I will not perform dangerous experiments or work with hazardous chemicals alone, as per the campus Chemical Hygiene Plan. Under these circumstances, I will make arrangements for a 'buddy system' with two or more people in the same room.

I will not use the laboratory for other purposes. I understand that laboratories are specialized, technical work areas and as such are NOT available for general student access. Approved uses include course-related work such as: assigned laboratory work, data analysis, or presentation preparation and practice. I understand access to equipment in the instructors’ bench in a teaching lab requires prior, special arrangements with the class instructor.

I will use the laboratory printer to print only data analysis and other materials specifically requested by the instructor. Prohibited printing includes:

- lecture materials
- literature searches, websites or articles even if the items are course related.
- work, papers, or any other materials for other classes.

If there is any accident, to a person or to equipment, I will report the incident as soon as possible to the appropriate authority (e.g., security, fire, paramedics, etc.) and to the course instructor. Emergency phones and all exits are well marked.

I will not use the adjacent prep room or the equipment within without specific permission.

I will not borrow equipment or reagents from other laboratories or research areas without prior permission from the professor who has principle responsibility for the item/room. I will take responsibility for returning all borrowed items, clean and in good working order, within a predetermined period of time.
Equipment Policies

All equipment purchased with biology departmental funds (regular budget or grants to the department...including HHMI, NSF, etc.) is available for use by any departmental faculty member.

Departmental faculty and staff are responsible for the maintenance and use of departmental equipment. The instrumentation specialist will make most of the arrangements for routine maintenance or special service for the departmental equipment.

An inventory of all departmental equipment that was purchased for ~$500 or more will be conducted yearly.

The IT department will maintain and inventory computer equipment in all laboratories.

Individuals who have primary responsibility for equipment are to coordinate the use of that equipment and ensure the equipment is working properly. Primary responsibility for equipment will be delegated as follows:

Research labs: Equipment primarily used by one faculty member and located in his/her research lab will be that faculty member’s responsibility.

Teaching labs: Faculty who teach in each lab and the Laboratory Managers will be responsible for the equipment in these labs. Any faculty member who needs to remove a piece of equipment from any lab, for use in another location, must return the equipment after use to its original location. The equipment must be clean and in working order when returned.

Prep rooms and special equipment rooms: Common equipment in these areas will be the responsibility of the instrumentation specialist, staff, and faculty members who use the equipment on a regular basis. Faculty members are responsible for insuring that the equipment is clean and in working order after each use. If a problem arises, the faculty member must immediately inform the instrumentation specialist and other faculty members who often use that equipment. If “common” equipment is taken from its original location for use at any time, the faculty member taking the equipment must sign the equipment out and indicate the date the equipment is taken, where he/she is taking the equipment, and when he/she expects to return the equipment to its original location. When returned, the equipment must be clean and in working order.

All departmental equipment is available for use by biology students under the direct supervision of a departmental faculty member. The supervising faculty member is responsible for:

• insuring that the student knows how to use the equipment
• cleaning and returning equipment (in good working order) to its appropriate location after use.

The use of departmental equipment for teaching will have priority over the use of that equipment for faculty or student research.
Biology Equipment

Centrifuges – Ultracentrifuge, standard centrifuges, refrigerated centrifuge, microcentrifuges, etc.
Ultralow freezers and many standard refrigerators
Incubators (varied and numerous) and growth chambers
Incubator shakers, shaking waterbaths, refrigerated waterbaths, microprocessor shakers, etc.
Metler microbalance and many other balances
Spectrophotometers (varied and numerous)
Autoclave units
Column chromatography refrigerator units
Vibratome sectioning system
Protein and nucleic acid electrophoresis equipment
Microplate readers
DNA microarray reader system
DNA microarray printing robot
DNA and RNA hybridization systems
Immunoblot apparatus
Gel and blot imaging system
Quantitative RT-PCR equipment
Field Vehicles
PCR equipment
Optical Tweezers
Cell Culture incubators and laminar flow hoods
Computational genomics lab with stereographic viewing (3-D) capabilities
Laser-scanning confocal microscope
Epifluorescence microscopes with an image analysis system
Inverted and phase contrast microscopes
Matic Dual Head Stereoscopes with fiberoptic illuminators and digital cameras
Picospritzer, micromanipulators and pipette puller
Microinjection setup for constructing transgenic flies
CCD cameras with microscopes
Ecological sampling equipment
Global positioning system
Geographical information systems
Telemetry equipment
Digital camcorders and cameras
Other standard camera equipment
Glass washers and RO units
Math & Science Center

The Math & Science Center (MSC) is an academic support resource located in the Center for Teaching & Learning (CTL) on the first floor of the College Library. The MSC offers free assistance to students in all areas of math and science, with a focus on the introductory courses.

Trained and highly qualified peers hold one-on-one and small-group tutoring sessions on a drop-in basis or by appointment, as well as timely recap sessions ahead of scheduled reviews. Assistance is also offered for lab reports, presentations, research, and other math and science projects, in concert with the Speaking Center, Writing Center, and College Library. Emphasis is placed on thinking critically, understanding concepts, making connections, and communicating effectively, not just getting correct answers.

In addition, students can start or join a study group and use the MSC as a group or individual study space. Computers loaded with course-specific software and other instructional tools are available for student use.

Drop-in hours are Sunday through Thursday, 8-11 PM, and Sunday, Tuesday, Thursday, 4-6 PM, starting in week two of each semester. Appointments are available at other times. For more information, visit, http://sites.davidson.edu/ctl/students/tutoring/math-science-economics-center/ or contact Dr. Mark Barsoum (mabarsoum@davidson.edu or ext. 2796).
External Grants in Biology

Davidson College Biology faculty members have been very successful obtaining research and education grants from public and private agencies. Most research grants are designed so that undergraduate students can participate in the research questions as collaborators. Since 2000 Biology faculty members have been principal investigators (PIs) on grants that have totaled more than $29,000,000. Specific external grants to Davidson Biology faculty members include:

2017 2 awards to 2 faculty members totaling $790,248
- 2017 $3,030 (Promega) Training Support Program Grant Biotoxicity course support – Bernd

2016 Four awards to three faculty members totaling $1,072,512
- 2016 $616,012 (NSF) Programmed Evolution for Metabolic Engineering – Campbell & Heyer
- 2016 $447,000 (NIH) Waterpipe configuration and alveolar cell health – Bernd & Hauser
- 2016 $5,000 (CADISIL) Summer Research Fellowship – El Bejjani
- 2016 $4,500 (ASCB) Promoting Active Learning & Mentoring (PALM) Network – Bernd

2015 Nine awards to four faculty members totaling $233,089
- 2015 $104,000 (Beckman) Beckman Scholars Program at Davidson College – Lom & Hauser
- 2015 $56,479 (US Fish & Wildlife) Eastern Diamondback Rattlesnakes in ACE Basin
- 2015 $5,000 (SCDNR) State Wildlife Grants
- 2015 $4,220 (Riverbanks Zoo) Conservation Support Fund
- 2015 $4,000 (USF&WS) Telemetry of bog turtles at Friday Bog
- 2015 $1,500 (Kiawah Island Conservancy) Reproductive Output of Diamondback Terrapins
- 2015 $1,480 (Knoxville Zoo) Bern W. Tryon Bog Fund
- 2015 $1,000 (Idea Wild) Conservation Grant – Stanback

2014 Fifteen awards to three biology faculty members totaling $251,453
- 2014 $80,025 (DOD) Estimating Densities and Detection Probabilities of Secretive Reptiles
- 2014 $56,416 (US Fish & Wildlife) Inventory of Eastern Diamondback Rattlesnakes
- 2014 $19,295 (USGS) Risk Analysis for Diamondback Terrapins
- 2014 $15,500 (Virginia Tech) NSF ROA – Stanback
- 2014 $14,456 (USF&WS) Inventory of Diamondback Terrapins
- 2014 $12,000 (ACS) Faculty Development: Strengthening Teaching & Learning Communities – Lom
- 2014 $12,000 (National Geographic Society) Indian Cavity Nesters Vulnerable to Tree Loss – Stanback
- 2014 $10,000 (ACS) Sustainability Blended Learning Library: Biodiversity/Ecosystem
- 2014 $9,981 (NCWRC) Environmental DNA for Bog Turtle Presence – Campbell, & Harden
- 2014 $5,300 (Duke Energy) Davidson College Herpetology Outreach Program
- 2014 $5,252 (Cornelius, NC) - Temporary Translocation of Semi-aquatic Turtles – Harden
- 2014 $5,000 (Columbus Zoo) Cavity Nesters Most Vulnerable to the Loss of Large Trees – Stanback
- 2014 $2,228 (Greenville Zoo) Can Nest Boxes Accelerate Colonization By Nuthatches? – Stanback
- 2014 $2,000 (John Ball Zoo) Identifying Cavity Nesters Vulnerable to Loss of Trees – Stanback
- 2014 $2,000 (Sacramento Zoo) S. African Cavity Vulnerable to Large Tree Loss – Stanback
External Grants in Biology (continued)

2013
13 awards to six biology faculty members totaling $1,674,152

<table>
<thead>
<tr>
<th>Year</th>
<th>Award Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>$584,913 (NSF) Using Synthetic Biology for Multidisciplinary Research – Campbell</td>
</tr>
<tr>
<td>2013</td>
<td>$408,230 (NIH) Regulation of Cd4 Expression – Sarafova</td>
</tr>
<tr>
<td>2013</td>
<td>$199,930 (NSF) Breathe, Eat, Touch (BET) Project – Bernd</td>
</tr>
<tr>
<td>2013</td>
<td>$186,000 (Dupont) Underrepresented Students and RISE Program – Case</td>
</tr>
<tr>
<td>2013</td>
<td>$100,000 (Breakthrough Prize in Life Sciences) Innovations in Teaching Biology – Campbell</td>
</tr>
<tr>
<td>2013</td>
<td>$98,954 (Williams-Transco) Monitoring Endangered Population of Bog Turtles – Case</td>
</tr>
<tr>
<td>2013</td>
<td>$82,247 (NCBC) Blueberry Genomics – Campbell</td>
</tr>
<tr>
<td>2013</td>
<td>$72,247 (OCR) Bog Turtle Research – Stanback</td>
</tr>
<tr>
<td>2013</td>
<td>$5,000 (Columbus Zoo) Nest Site Competition – Stanback</td>
</tr>
<tr>
<td>2013</td>
<td>$3,250 (Birds of Prey Trust) Nest Site Competition – Stanback</td>
</tr>
<tr>
<td>2013</td>
<td>$2,228 (Greenville Zoo) Nest Site Competition – Stanback</td>
</tr>
<tr>
<td>2013</td>
<td>$2,000 (UNC Greensboro) Carolina Herp Atlas</td>
</tr>
<tr>
<td>2013</td>
<td>$1,700 (ACS) ACS Sustainability Blended Learning Library</td>
</tr>
<tr>
<td>2013</td>
<td>$1,000 (Fresno Chaffee Zoo) Nest Site Competition – Stanback</td>
</tr>
<tr>
<td>2013</td>
<td>$700 (Greenville Zoo) Conservation Fund – Stanback</td>
</tr>
</tbody>
</table>

2012
11 awards to six biology faculty members totaling $966,008

<table>
<thead>
<tr>
<th>Year</th>
<th>Award Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>$398,055 (NSF) Tissue-Specific ATP Synthase Subunits in Mitochondrial Shaping – Hales</td>
</tr>
<tr>
<td>2012</td>
<td>$320,832 (NSF) AAA ATPases Linking Mitochondria with Microtubule Processing – Hales</td>
</tr>
<tr>
<td>2012</td>
<td>$9,950 (ACS) Extending the Benefits of the ACS Teaching & Learning Workshop – Lom</td>
</tr>
<tr>
<td>2012</td>
<td>$9,255 (ACS) Enhancing the ACS Teaching & Learning Workshop – Lom</td>
</tr>
<tr>
<td>2012</td>
<td>$7,876 (NC Biotechnology Center) Education Enhancement – Campbell</td>
</tr>
<tr>
<td>2012</td>
<td>$6,560 (NSF) – Campbell (supplement)</td>
</tr>
<tr>
<td>2012</td>
<td>$5,000 (NCBC) Undergraduate Biotechnology Research Fellowship – Sarafova</td>
</tr>
<tr>
<td>2012</td>
<td>$3,200 (NCBC) Informal Science Education</td>
</tr>
<tr>
<td>2012</td>
<td>$2,850 (Cardinal Foundation) Bog Turtle Research</td>
</tr>
<tr>
<td>2012</td>
<td>$2,000 (AAI) American Association of Immunologist Meeting – Sarafova</td>
</tr>
</tbody>
</table>

2011
13 awards to six biology faculty members totaling $1,239,293

<table>
<thead>
<tr>
<th>Year</th>
<th>Award Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>$429,000 (NSF) Elucidating Roles of Slitrks in the Developing Zebrafish CNS – Lom & Round</td>
</tr>
<tr>
<td>2011</td>
<td>$269,700 (NSF) Workshop: Synthetic Biology Workshops – Campbell & Heyer</td>
</tr>
<tr>
<td>2011</td>
<td>$199,999 (NSF) Second Generation Bacterial Computers – Campbell & Heyer</td>
</tr>
<tr>
<td>2011</td>
<td>$100,000 (Teagle Foundation) Influential Interventions – Case & Scott</td>
</tr>
<tr>
<td>2011</td>
<td>$80,000 (Williams-Transco) Status of Bog Turtles in Gaston County</td>
</tr>
<tr>
<td>2011</td>
<td>$60,000 (Merk/AAAS) Biochemistry-Related Projects – Bernd</td>
</tr>
<tr>
<td>2011</td>
<td>$42,344 (Duke Energy) SNSWP Amphibian Study</td>
</tr>
<tr>
<td>2011</td>
<td>$40,000 (Williams-Transco) Environmental Impact Study</td>
</tr>
<tr>
<td>2011</td>
<td>$8,000 (ACS) Strategic Planning to Improve the ACS Teaching & Learning Workshop – Lom</td>
</tr>
<tr>
<td>2011</td>
<td>$5,000 (NCBC) Undergraduate Biotechnology Research Fellowship Director – Sarafova</td>
</tr>
<tr>
<td>2011</td>
<td>$2,250 (AAI) Immunology Annual Meeting – Sarafova</td>
</tr>
<tr>
<td>2011</td>
<td>$2,000 (UNC Greensboro) Carolina Herp Atlas</td>
</tr>
<tr>
<td>2011</td>
<td>$1,000 (Promega) Product Development GSH/GSSG- Glo Kit – Bernd</td>
</tr>
</tbody>
</table>

2010
5 awards to four biology faculty members totaling $417,892

<table>
<thead>
<tr>
<th>Year</th>
<th>Award Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>$212,901 (NIH) 1, 2, 3 – Triazole Nucleobases in Nucleosome Analogs – Wessner & Stevens</td>
</tr>
<tr>
<td>2010</td>
<td>$149,091 (Broad River Trust) Amphibians & reptiles as Indicators of Disturbance</td>
</tr>
<tr>
<td>2010</td>
<td>$43,000 (NCBC) Education Enhancement Grant – Sarafova</td>
</tr>
<tr>
<td>2010</td>
<td>$7,900 (NNAS) Nest Site Competition – Stanback</td>
</tr>
<tr>
<td>2010</td>
<td>$5,000 (Duke Energy) Hellbender</td>
</tr>
</tbody>
</table>
External Grants in Biology (continued)

<table>
<thead>
<tr>
<th>Year</th>
<th>Awards</th>
<th>Description</th>
</tr>
</thead>
</table>
| 2009 | Nine awards to three biology faculty members totaling $144,922 | $59,950 (NFWF) Golf Courses as Turtle Habitat in Urbanized Area
$27,413 (Duke Energy) Herpetological Surveys of the W.S. Lee III Nuclear Station
$26,413 (Duke Energy) Herpetological Surveys of the Proposed Railroad Site
$10,000 (ACS) Educational Practices Informed by Cognitive Sciences – Lom
$8,000 (NFWF) Brown-Headed Nuthatch Conservation – Stanback
$7,000 (NSF) Effects of Urbanization on Amphibian and Reptiles (supplement)
$4,886 (NCWC) Carolina Herp Atlas
$800 (Carolina Bird Club) Birds of the Carolinas Student Research
$460 (Carolina Bird Club) Birds of the Carolinas Student Research – Stanback |
| 2008 | Ten awards to three biology faculty members totaling $1,606,017 | $1,500,000 (HHMI) Undergraduate Science Education – Case
$28,300 (Duke Energy) Herpetofaunal Surveys of Lakes Keowee & Jocassee
$24,800 (Duke Energy) Herpetofaunal Surveys of London Creek, South Carolina
$19,617 (Univ. of Florida) Thermal Biology of Invasive Pythons in Everglades NP
$12,000 (NSF) Effects of Urbanization on Amphibian and Reptile (supplement)
$10,000 (Greenville Water System) Habitat Evaluation for Bog Turtles
$8,000 (NFWF) Brown-Headed Nuthatch Conservation – Stanback
$7,000 (NSF) Effects of Urbanization on Amphibian and Reptile (supplement)
$4,800 (ACS) Studies of Invasive Burmese Pythons in Everglades
$4,000 (ACS) The Memory Group: Multidisciplinary Discourse – Lom
$2,000 (Duke Energy) Herpetological Research and Education in the Catawba Region
$500 (Transylvania University) Faculty Seminar – Lom |
| 2007 | Ten awards to five biology faculty members totaling $742,888 | $307,655 (NSF) Collaborative GCAT DNA Microarray Workshops – Campbell & Heyer
$211,784 (NIH) Academic Research Enhancement Award – Hales
$17,000 (NC Wildlife Resources Commission) Online Carolina Herp Atlas – Price
$12,000 (NSF) Effects of Urbanization on Amphibian and Reptile (supplement)
$9,500 (ACS) Redesigning Human Biology for Non-Science Majors - McNally
$8,450 (NC Wildlife Resources Commission) Bog Turtle Ecology & Conservation
$7,400 (ACSF) The Memory Group: Multidisciplinary Discourse – Lom
$2,710 (Duke Energy) Herpetological Survey of W.S. Lee III Nuclear Station
$2,500 (Duke Energy) Herpetological Research and Education in the Catawba Region
$500 (National Science Digital Library) BiosciEdNet (BEN) Scholars – Wessner |
| 2006 | Thirteen awards to eight biology faculty members totaling $4,328,738 | $3,750,000 (Duke Endowment) – Davidson Research Initiative - Case
$307,655 (NSF) Collaborative Proposal – Campbell & Heyer
$211,784 (NIH) Academic Research Enhancement Award – Hales
$17,000 (NC Wildlife Resources Commission) Online Carolina Herp Atlas
$13,405 (NC Ecosystem Enhancement) Herpetological Inventory of Five-Mile Branch
$12,000 (NSF) Effects of Urbanization on Amphibian and Reptile (supplement)
$7,400 (NFWF) Brown-Headed Nuthatch Conservation – Stanback
$3,000 (ACS) Designing a Senior Level Environmental Studies Course – Paradise, Peroni, Martin
$3,000 (ACS) Designing an Intro Environmental Studies Course – Paradise, Peroni, Martin
$1,500 (Duke Energy) Herpetological Research and Education in the Catawba Region
$994 (ACS) Campus Community Partnership
$500 (ACS) Designing Two Environmental Studies Courses – Paradise
$500 (National Science Digital Library) BiosciEdNet (BEN) Scholars – Wessner |
External Grants in Biology (continued)

<table>
<thead>
<tr>
<th>Year</th>
<th>Awards</th>
<th>Total Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>Eight awards to seven biology faculty members totaling $154,247</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>$121,297 (NSF) Microarray Workshop for Undergraduate Faculty – Campbell & Heyer</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>$21,800 (Duke Energy) Herpetofaunal Surveys of the Catawba-Wateree River System</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>$6,000 (NSF) Effects of Urbanization on Amphibian and Reptile (supplement)</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>$2,000 (Duke Energy) Herpetological Research and Education in the Catawba Region</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>$1,200 (ACS) Earth Month: A Celebration of Green – Paradise, Peroni, Martin</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>$900 (Fantastic Frog) In kind grant of Xenopus laevis frogs – Lom</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>$850 (ACS) Environmental Initiative – Stanback</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>$200 (Town of Davidson) Parks and Recreation - Stanback</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Ten awards to five biology faculty members totaling $3,094,787</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>$1,500,000 (HHMI) Undergraduate Science Education – Case</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>$612,761 (NSF) Urbanization on Amphibians, Reptiles, and Semi-Aquatic Turtles</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>$605,477 (NSF) Factors Regulating Dendritic Arborization in the Xenopus Visual System – Lom</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>$237,179 (NSF) Acquisition of a Confocal Microscope for Research and Training – Lom</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>$43,800 (Duke Energy) Rare, Threatened, & Endangered Amphibians</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>$39,640 (NSF) Microarray Workshop for Undergraduate Faculty – Campbell & Heyer</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>$38,930 (NIH) SBIR-SBTT – Campbell</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>$9,500 (ACS) HIV/AIDS: Development of a Course – Wessner</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>$6,000 (NSF) Effects of Urbanization on Amphibian and Reptile (supplement)</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>$1,500 (Duke Energy) Herpetological Research and Education in the Catawba Region</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Fifteen awards to seven biology faculty members totaling $1,535,741</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>$1,200,000 (NHGRI) Multimedia Tools for Teaching Genomics – Campbell</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>$200,000 (NSF) Chain Interactions in Detritus-based Communities – Paradise & Wessner</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>$60,000 (Merck/AAAS) Undergraduate Research in Biology & Chemistry – Bernd & Stevens</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>$30,000 (Whitehall) Growth Factor Regulation of Dendritic Arborization in vivo – Lom</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>$15,000 (NSF) Microarray Workshop for Undergraduate Faculty – Campbell & Heyer</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>$6,306 (NSF) REU Supplement – Campbell</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>$5,000 (NSF) Develop Genomic Visualization Tools – Campbell & Heyer</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>$3,500 (Duke Energy) Herpetological Outreach and Research</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>$3,500 (ACS) Vertebrate Inventory of the Brackett Preserve – Stanback</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>$3,500 (ACS) Campus-Community Partnership – Stanback</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>$2,685 (ACS) Student Development and Engagement - Stanback</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>$2,500 (ACS) Floral and Faunal Id Made Easy</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>$2,500 (ACS) Improving HIV/AIDS Education – Wessner</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>$750 (ACS) Campus-Community Partnership – Stanback</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>$500 (ASVTUS) Travel Award – Wessner</td>
<td></td>
</tr>
</tbody>
</table>
External Grants in Biology (continued)

2002 Seventeen awards to six biology faculty members totaling $1,069,452

<table>
<thead>
<tr>
<th>Year</th>
<th>Amount</th>
<th>Source</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>$500,000</td>
<td>NSF</td>
<td>Drosophila spermatogenesis – Hales</td>
</tr>
<tr>
<td>2002</td>
<td>$248,101</td>
<td>NSF</td>
<td>Student-Faculty Research in the Life Sciences – Stanback, Ramirez</td>
</tr>
<tr>
<td>2002</td>
<td>$92,000</td>
<td>Duke</td>
<td>Establishing genomics, proteomics and bioinformatics lab – Campbell</td>
</tr>
<tr>
<td>2002</td>
<td>$66,391</td>
<td>NIH</td>
<td>SBIR-SBTT – Campbell</td>
</tr>
<tr>
<td>2002</td>
<td>$43,449</td>
<td>NSF</td>
<td>Merging Classical Embryology & Modern Developmental Biology – Lom</td>
</tr>
<tr>
<td>2002</td>
<td>$37,226</td>
<td>NPS</td>
<td>Herpetofaunal surveys on National Park Units</td>
</tr>
<tr>
<td>2002</td>
<td>$33,976</td>
<td>NPS</td>
<td>Herpetological Inventories of NPS Southeast Coastal Network</td>
</tr>
<tr>
<td>2002</td>
<td>$15,686.</td>
<td>NSF</td>
<td>REU Supplement – Campbell & Heyer</td>
</tr>
<tr>
<td>2002</td>
<td>$10,945</td>
<td>CSUBERB</td>
<td>DNA microarrays in undergraduate curricula – Campbell</td>
</tr>
<tr>
<td>2002</td>
<td>$5,100</td>
<td>Duke Energy</td>
<td>Catawba River Cover Board Project</td>
</tr>
<tr>
<td>2002</td>
<td>$4,000</td>
<td>CUR</td>
<td>How Does FGF Regulate Retinal Neuron Dendritic Arborization? – Lom</td>
</tr>
<tr>
<td>2002</td>
<td>$3,200</td>
<td>ACS</td>
<td>Central Carolina Amphibian and Reptile Initiative</td>
</tr>
<tr>
<td>2002</td>
<td>$2,500</td>
<td>ACS</td>
<td>Providing Connections: Resources for Cell Biology – Bernd</td>
</tr>
<tr>
<td>2002</td>
<td>$2,500</td>
<td>ACS</td>
<td>Teaching with Technology - Campbell</td>
</tr>
<tr>
<td>2002</td>
<td>$2,400</td>
<td>Global Partners Project</td>
<td>Herpetological Research in Kenya</td>
</tr>
<tr>
<td>2002</td>
<td>$1,738</td>
<td>ACS</td>
<td>Campus-Community Partnership – Stanback</td>
</tr>
<tr>
<td>2002</td>
<td>$240</td>
<td>Carolina Bird Club</td>
<td>Birds of the Carolinas Student Research – Stanback</td>
</tr>
</tbody>
</table>

2001 Four awards to four biology faculty members totaling $84,045

<table>
<thead>
<tr>
<th>Year</th>
<th>Amount</th>
<th>Source</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>$75,390</td>
<td>NSF</td>
<td>DNA Microarray Reader System – Campbell & Heyer</td>
</tr>
<tr>
<td>2001</td>
<td>$3,655</td>
<td>ACS</td>
<td>Maximizing Audience & Student Perceived Relevance – Bernd</td>
</tr>
<tr>
<td>2001</td>
<td>$2,500</td>
<td>ACS</td>
<td>Techno-herpetology</td>
</tr>
<tr>
<td>2001</td>
<td>$2,500</td>
<td>ACS</td>
<td>The 4D Brain – Lom</td>
</tr>
</tbody>
</table>

2000 Eight awards to six biology faculty members totaling $116,279

<table>
<thead>
<tr>
<th>Year</th>
<th>Amount</th>
<th>Source</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>$23,430</td>
<td>NCB</td>
<td>Biotechnology Units for Cell and Microbiology courses – Bernd & Wessner</td>
</tr>
<tr>
<td>2000</td>
<td>$20,000</td>
<td>Foundation for Microbiology</td>
<td>Genome Consortium for Active Teaching – Campbell</td>
</tr>
<tr>
<td>2000</td>
<td>$5,500</td>
<td>AAUW</td>
<td>Wiring the Brain: How Do Neurotrophins Influence Retinal Neurons – Lom</td>
</tr>
<tr>
<td>2000</td>
<td>$2,500</td>
<td>ACS</td>
<td>Integrating WWWeb-based Technology into a Cell Bio Course - Bernd</td>
</tr>
<tr>
<td>2000</td>
<td>$2,500</td>
<td>ACS</td>
<td>Genome Consortium for Active Teaching (GCAT) - Campbell</td>
</tr>
<tr>
<td>2000</td>
<td>$2,500</td>
<td>ACS</td>
<td>A Web-Based Tool for the Recognition of Anuran Vocalizations</td>
</tr>
<tr>
<td>2000</td>
<td>$500</td>
<td>PUMA Conservation Association</td>
<td>Research Grant – Stanback</td>
</tr>
</tbody>
</table>
Scientific Publications by Davidson Biologists

Davidson College Biology faculty members have been very successful publishing peer-reviewed research and education outcomes in a wide variety of scientific publications. Many students have contributed to these publications as co-authors. Since 2010 Biology faculty members at Davidson College have published more than 115 journal articles, books, and book chapters that included more than 160 undergraduate co-authorships.

Specific publications since 2010 include:

*bold = undergraduate coauthor
underline = Davidson faculty member (non-Bio)
double underline = Davidson Biology faculty member

2017 2 publications by 2 Biology professors with 14 undergraduate coauthorships

2016 12 publications by nine Biology professors with 17 *undergrad co-authorships

Andersen KS, Lom B, Sandlin BA (2016) The challenges of promoting instructional improvement: Teaching behaviors and teaching cultures at liberal arts institutions in the Associated Colleges of the South. To Improve the Academy: A Journal of Educational Development 35: 72-120 DOI: 10.1002/tia2.20035

2015 22 publications by eight Biology professors with 32 *undergrad co-authorships

2014 27 publications by eight Biology professors with 24 *undergrad co-authorships

*Chalfant M, Bernd KK (2014) 17β-estradiol alters rat type-II alveolar cell recovery from high levels of ozone. PLOS One 9: e90530.

2014 continued

2013 18 publications by seven Biology professors with 20 *undergrad co-authorships

Round JE, Campbell AM (2013) Figure Facts: Encouraging undergraduates to take a data-centered approach to reading primary literature. *CBE Life Sciences Education* 12: 39-46.

2012 18 publications by six Biology professors with 32 *undergrad co-authorships

2011 18 publications by six Biology professors with 29 *undergrad co-authorships

Scientific Publications by Davidson Biologists (continued)

2010 20 publications by 5 Biology professors with 13 *undergrad co-authorships

